您现在的位置是:Instagram刷粉絲, Ins買粉絲自助下單平台, Ins買贊網站可微信支付寶付款 > 

液壓油管壓頭工具(油井采油技術是什么?)

Instagram刷粉絲, Ins買粉絲自助下單平台, Ins買贊網站可微信支付寶付款2024-05-08 07:16:53【】2人已围观

简介什么是管路?管路就是油管嗎?有哪些廠家是生產這個呢?管路是指液壓系統中傳輸工作流體的管道。[編輯本段]空調制冷系統管路設計1前言隨著先進制造技術的不斷涌現,空調制造業激烈的市場競爭呈現出與往不同的特點

什么是管路?管路就是油管嗎?有哪些廠家是生產這個呢?

管路是指液壓系統中傳輸工作流體的管道。

[編輯本段]空調制冷系統管路設計

1前言

隨著先進制造技術的不斷涌現,空調制造業激烈的市場競爭呈現出與往不同的特點。提升產品的市場競爭力,縮短產品的生命周期,降低產品開發成本,豐富產品的品種等成為了各個空調廠家市場競爭的焦點。隨著國際國內市場的不斷擴大,各個空調廠家在某種型號的空調器上都必須匹配多種壓縮機,而隨之而來制冷系統管路的自主重新設計在以往傳統二維軟件如AU-TOCAD平臺下存在著周期長,效率低,偏差大等缺點,所以目前已有很多廠家開始使用三維設計軟件進行空調制冷系統的設計。三維軟件以它形象生動的交互介面,高度參數化的設計理念,智能化的分析能力,特別以PRO/ENGINEER為例,擺脫了以往二維設計的枯燥、實體感和空間感不強的缺點,為高效高質開發提供了可能性。

2利用PRO/E對管路實體進行設計

PRO/ENGINEER提供了專用的管理設計模塊PRO/Piping。根據已設計好的室外鈑金模型(圖1),我們利用PRO/Piping功能進行空調室外管路設計(圖3)。傳統的管路設計方法主要是在實物上測量,然后反復制作配管樣品裝機校核,設計周期長。而使用PRO/Piping進行管路設計很好地解決了這一問題,由于其全參數的三維設計模式,使得工程開發人員在進行管路設計的時候,不但對管路的工藝性、三維空間的位置都有了全局性的考慮,同時還能更全面地考慮到管路由于跌落及運輸帶來的震動和噪音等方面的影響,因此提高了管路設計的一次成功率及管路的可靠性,縮短了開發的時間。

同時由于零部件的高度通用化及標準化,加之壓縮機外觀的大同小異,我們可以利用PRO/ASSEMBLY的Restructure對四通閥部件(圖2)進行重新構建,然后在SaveaCopy新建一個四通閥部件,接著利用MATE、ALIGN、INSERT、ORIGN等進行裝配。再修改管路的參數,很快就能初步構建好新的四通閥部件,這樣大大減少了前期對管路部件構思和設計的時間。這也是PRO/E高度參數化帶來的好處。

由于PRO/E在設計上有如上的特點,所以在縮短開發周期中,保證了設計質量的同時,也大大減少樣件的數量。這對開發成本的降低是很明顯的。同樣利用PRO/E的AssemblyMassProperties,可以通過輸入組件的材料密度后,得到體積、曲面面積和質量等數據(圖4),這對于前期對管路部件進行成本預算是很有用的。特別是近期的原材料價格大幅度上漲,材料成本的控制成為了成本控制的一大環節。設計開發人員可以利用該功能在設計初期就對成本進行有效的控制。

3利用PRO/E對管路實體進行有限元分析

上面主要通過對PRO/ENGINEER在從機械方面對管路設計的作用進行探討,很明顯,其在管路的模型設計還有前期的成本控制、管路部件的合理定位、設計更改等都表現得尤為突出,是二維軟件不可同日而語的。而管路內部情況,振動情況怎樣呢?我們接著以管路分析為例,探討一下PRO/ENGINEER在功能模擬方面PRO/MECHANICA的思路。

圖5為PRO/MECHANICA對管路進行性能模擬的流程圖:

(1)通過PRO/E建立管路的幾何模型,這在前面我們已經講過。

(2)在PRO/M的登錄介面選擇模型的類型,PRO/M默認的類型為實體。我們通過PRO/E設計的管路一般都為實體。

(3)為模型設定特性,并非模型每個部分的特性都得設置得一樣,例如,在四通閥部件這個組件下面,我們可以把四通閥設置為黃銅,而其它管路則設置為紫銅。而對于管路的應力分析,則必須設置楊氏模數和泊松比等必要的參數PRO/M的軟件包里的數據庫有常規材料(如銅、鋁、鐵等等)的數據可供調用。確定模型的約束。如在應力分析中,可將某些確定的點,或者沿某一指定方向可自由移動的點設置為約束。PRO/CUSTOMLOADS進行自定義載荷輸入。

(4)當確定好模型的各個參數之后,接著可以用PRO/MESH自動生成管路的有限元網格。也就是它自動地將實體模型劃分成有限元素,以便有限元分析用,所有參數化應力和范圍條件可直接在實體模型上指定,即允許設計者定義參數化載荷和邊界條件,并自動生成四邊形或三角形實體網格。載荷、邊界條件與網格都直接與基礎設計模型相關聯,并能像設計時一樣進行交互式修改。

(5)通過PRO/M進行管路的有限元分析后,產生的數據可以通過其繪圖功能,用圖表表現出來。這可以讓我們更為清晰的連接管路各個部分的應力分布等情況,這為穩健式開發提供了開發基礎,為后期的更改提供了分析的依據。

(6)最后,我們應該重新檢討我們的分析得到的結果。軟件會根據分析得到的結果在模型上生動地表現出來,例如由于應力產生的形變等等。但是“FEAmakesagoodengineerbetterandapoorengineerdangerous”因為工程軟件內部運作比較復雜,如果僅僅依賴它來對管路進行確認,可能會離“危險邊緣“很近,不要忘了多年的工作經驗也是設計確認過程中一個很重要的因素。所以說利用PRO/M進行管路分析,除了需要一定的有限元知識外,還需要一定的工程知識。只有這樣才能充分地利用PRO/M。

4結論

采用PRO/ENGINEER三維軟件對空調制冷系統管路進行優化設計和有限元分析,使得開發的環境得到改善,從而提高了開發的效率和產品的質量。特別是它參數化的設計思想和強大的分析功能讓我們認識到對開發工具應用的全面提升,不但有著巨大的經濟效益,而且保持了我們工程設計人員持久的創新力和學習力。

[編輯本段]熱水系統CAD管路設計

隨著我國國民經濟的發展和人民生活水平的提高,生活熱水系統在建筑中的應用日趨廣泛,迫切需要熱水系統設計計算軟件。室內生活熱水系統按照循環方式可分為全循環管網、半循環管網和非循環管網。對于循環管網,其系統設計計算由熱力計算和水力計算組成,熱力計算部分非常繁瑣,設計人員進行手工計算難度較大。熱水系統計算繪圖一體化軟件在國內成型的產品很少,不能滿足設計單位的需求,對其進行開發具有研究價值和經濟效益。

1室內生活熱水系統的枝狀、環狀管路結構

對生活熱水系統進行設計計算的關鍵在于根據系統管路建立正確簡明的數據結構。以下介紹全循環、半循環、非循環熱水管網的管路結構:

全循環管網即所有配水干管、立管和分支管都設有相應的回水管道,可保證配水管網任意點水溫的熱水管網。

半循環管網僅熱水干管設有回水管路,只能保證干管中的設計溫度的熱水管。

非循環管網即不設回水管路的熱水管網。

圖2半循環系統

2熱水管路枝狀、環狀管路的數據結構描述

上述三種熱水系統的管路可視為由配水管網與回水管網組成(非循環管網回水管路數為零),建立數據結構時,分別建立配水、回水管網的結點、管路結構。

結點的結構定義如下:

STRUCTRURE/POT/

INTEGER*2JD結點號

INTEGER*1JDNUM結點的度

INTEGER*2JDTT(4)結點的孩子數組

INTEGER*1SIGN配水結點與回水

結點的連接標記

INTEGER*1ID結點的遍歷標記

**結點的物理參數

管段的結構定義如下:

STRUCTURE/PIPE/

INTEGER*2JD1管段起始結點號

INTEGER*2JD2管段終止結點號

**管段的物理參數

配水管網結點和回水管網結點組成各自的枝狀結構,基于配水枝狀結構進行系統水力計算。對于循環系統,根據配水結點與回水結點的連接信息(POT.SIGN),將兩個枝狀結構組成一個環狀結構,完成兩個枝狀結構之間的數據傳遞。全循環系統和半循環系統在這種結構下的區別僅在于配水回水連接信息的不同,而循環計算是從配水回水連接點開始的,這樣無需輸入系統種類信息,程序就可以處理不同的循環方式了。對非循環系統,程序則僅對它進行配水計算。至此,熱水環路計算的數據結構就建立起來了。

3系統水力熱力計算

計算所需的管路數據由設計者在平面設計繪圖中輸入,系統對管段進行自動處理,相交處自動斷管,生成結點,在設計過程中可隨時對管段結點的成員變量進行修改。

3.1配水管網水力計算

配水管網水力計算在于確定配水管網的管徑和水頭損失,復核管網水壓是否滿足衛生器具的流出水頭的水壓要求。在本計算模型中,由配水結點捕捉各衛生器具和設備,得到流出水頭和流量(或當量),由枝狀結構完成各管路的流量、阻力計算,最后得出管段管徑和結點水壓。

3.2配水管網熱力計算

(1)給出初始參數由設計者給出加熱器出口水溫、最不利配水點水溫等初始參數,所有參數系統都設有默認值,設計者只需做局部修改,參數設置對話框如圖3所示。

(2)估算各結點水溫根據配水管網最大溫度降和各管段溫降因素M,由式(1)按比例估算各結點水溫:

(1)

式中,tn為n結點水溫;tn-1為n-1結點水溫;Mn為n管段溫降因素;ΔT為配水最大溫降;∑M為溫降因素總和。

在本程序中先對最不利管路結點水溫進行計算,再由枝狀結構從已知結點水溫推算出其它支路結點水溫。

(3)計算配水管網熱損失由式(2)計算配水各管段熱損失W:

W=πDlk(1-η)(tm-tk)(kW)(2)

式中,D為管段外徑(m);l為計算管段長度(m);k為無保溫時管段傳熱系數(kW/m2.℃);η為保溫系數;tm為計算管段平均水溫;tk為計算管段周圍的空氣溫度(℃)。

(4)計算循環流量由式(3)計算總循環流量:

Qx=∑W/cΔT(3)

式中,Qx為總循環流量(kg/s);∑W為配水管路總熱損失(kW);ΔT為配水最大溫降(℃);c為水的比熱(kJ/kg.℃)。

利用枝狀結構各結點的孩子數組,根據如下原則分配各分支管的循環流量:

①從水加熱器后的第1個結點開始依次進行分配;

②對任一結點,分支管循環流量代數和為零;

③對任一結點,各分支管段的循環流量與其以后全部循環配水管道的熱損失之和成正比。

(5)計算循環水頭損失回水管管徑采用比相應配水管段管徑小兩號,根據式(4)計算循環水頭損失H:

H=∑Rl+∑ζv2r/2g(4)

式中,R為單位長度沿程水頭損失(Pa/m);l為管段長度(m);ζ為局阻系數;v為水循環流速(m/s);r為水密度(kg/m3);g為重力加速度(m/s2)。

對于式中的局阻系數,本程序由管段枝狀結構判斷彎頭、三通、四通;根據平面輸入信息得到各種管道附件位置管徑,計算它們的局阻系數。

4生成計算書,并將計算結果返回平面圖

計算結束后,系統生成三個文檔,分別記錄計算的原始數據、計算結果和計算草圖。計算結果包括管網各管道管徑、結點水溫、結點壓頭、系統配水量、配水系統所需配水壓頭、循環水量、循環系統水頭損失等數據。計算草圖中對所有管段進行了編號,可以根據它查詢文檔中對應管段的各個數據。計算結果樣式見圖4。

計算結果自動返回平面圖,在施工圖中可進行自動標注。

本文所述程序為PKPM系列給排水軟件(WPM)的一個模塊,已經在數百家單位中使用并得到了良好的反響。

[編輯本段]農村家用沼氣管路設計規范

適用范圍

本規范適用于家用沼氣池的管路系統。

1一般規定

1.1農村家用沼氣池的管路系統應符合穩固、耐用、氣密性能可靠、操作方便以及使用安全的原則。設計時除應遵守本規范處,還應符合GB3606—83《家用沼氣灶》以及當地消防和衛生條例。

1.2水壓式沼氣池應采取一定的穩壓措施。在設備條件不具備時,可暫用閥調節壓力。

1.3本規范室外管路應彩硬管地埋。室內管路為硬管明敷。不具備條件使用硬管的地方可使用塑料軟管,但不得使用再生塑料管。

2管材和管件

2.1管材

2.1.1農村家用沼氣池的管路材料,應使用聚氯乙烯管(包括紅泥塑料)或抗氧性能良好的聚乙烯管為基本管材。

2.1.2管材的選用室外管路應結合當地氣溫條件,一般地區采取聚氯乙烯管,嚴寒地區應采用聚乙烯管。室內管路一律采用聚氯乙烯管。

2.2管件

2.2.1硬管管件

2.2.1.1聚氯乙烯硬管及聚乙烯管的管件均采用端部為承口的注塑管件。承口尺寸:承口內徑為管子外徑加0.05~0.2mm;承口長度(L)為管子外徑(D)的一半加6mm,即L=0.5D+6mm。

2.2.1.2聚氯乙烯硬管及聚乙烯管是管路中經常需要拆裝或定期更換的部件,該拆裝端應是注塑內螺紋承口或裝有彈性密封環的承口。

2.2.2軟管管件

2.2.2.1軟管管件均采用帶有密封節的管件,各端密閉節的個數不得少于3個。節的間距為5mm,管件內徑(d’)應是管材內徑(d)減去2mm,即d’=d-2mm。

2.2.2.3管塞

硬管和軟管的管塞均采用一般使用的橡皮塞。

3管路連接

3.1聚氯乙烯硬管管路的連接采用承插式膠粘連接。

3.2聚乙烯管路的連接采用承插式熱熔連接。

3.3聚氯乙烯硬管或聚乙烯管與膠皮管的連接采用套接,并應緊固牢靠。

3.4聚乙烯管與聚氯乙烯管的連接以及需要拆裝檢修的部件,應采用螺紋連接或彈性連接(承口內裝有密封環)。

3.5紅泥塑料管路聚氯乙烯軟管管路的連接采用套接,并由鐵絲扎緊。

3.6聚氯乙烯硬管與燃具(灶和燈)、流量表、U型壓力計等的連接,應通過膠皮管進行套接。并用細鐵絲將接口扎緊。

4室外管路

4.1地面下埋設深度應在冰凍線以下,并不得小于0.4m。

4.2管路應設有不小于1%的坡度,并向凝水器方向落水。

4.3管路穿越有重車通行的道路時,應敷設在保護管路的涵管內。

4.4沼氣管路與其他地下管道相交或平行時至少應有10cm的凈距。

5室內管路

5.1管路的布置應外觀整齊,便于操作和維修,并避免敷設在陽光照射、高溫、冰凍和易受外力沖擊的地方。

5.2管路應沿墻或梁按明管方式敷設,不得騰空懸掛。

5.3管路應牢固地固定在耐燃的構筑物上,固定支點的間距規定如下:

5.3.1立管上應不超過1m。

5.3.2不平管上固定支點間距:聚氯乙烯硬管小于0.8m,紅泥塑料管和聚氯乙烯軟管小于0.5m。

5.4管路坡度

水平管段的坡度應不小于0.5%,并向立管方向落水。

5.5管路從室外地下引入室內的外墻穿孔,在管頂上方應保留有5cm以上的空隙。

5.6立管距離煙囪應不小于50cm。連接灶具的水平管段應低于灶面5cm。

5.7管路距離煙囪應不小于50cm。距離電線不小于10cm。

5.8裝置高度

5.8.1灶面距離地面一般為0.8m。燈距地面為2m。

5.8.2中2中間開關距離地面1.45m。

5.8.3U型壓力計開關距離地面1.25m。

5.8.4貯氣袋擱板距離地面應不小于1.9m,并不得安放在灶具的上主。

5.8.5沼氣燈與易燃構筑物的距離不得小于1m。

6管路允許壓力降

6.1使用氣袋貯氣時,管路允許壓力降為20mmH2O。

6.2使用濕式貯氣裝置時,管路允許壓力降為40mmH2O。

6.3水壓式池的管路,灶具額定壓力為80mmH2O,管路允許壓力降為220mmH2O,灶具額定壓力為160mmH2O時,管路允許壓力降為140mmH2O。

7管路口徑和管路長度

7.1聚氯乙烯硬管和聚乙烯管的管路。

7.1.1使用濕式貯氣裝置時地下管的最小外徑:在土質良好的地點為20mm,土質較差時為25mm。室內管路外徑為12mm。

7.1.1.1使用濕式貯氣裝置的室外管路,長度自貯氣罩至外墻引入點不應超過30m;引入點至最遠燃具的室內管路長度按安裝二灶一燈設計,不應超過6m。

7.1.1.2使用氣袋貯氣的管路,當氣袋設置在室內時,室外管路的長度不加限制,但直段管路長度超過30m時應設溫度補償裝置;氣袋出口至灶前的室內管路長度安裝二灶設計,不應超過3m;室內管外徑為20mm時,長度可不受此限制。

7.1.1.3水壓式池的管路長度:室外管路一般應控制在25m以內,最長不宜超過45m。引入點至最遠燃具的室內管長度不宜超過10m。

7.2紅泥塑料管和聚氯乙燃軟管的管路

7.2.1灶具額定壓力為80mmH2O時,從水壓式沼氣池至灶前的管路管徑和管路允許長度如下:

7.2.1.1內徑8mm或10mm(二灶),管路長度應不超過25m。

7.2.1.2內徑10mm或12mm(二灶),管路長度可為25~50m。

7.2.2灶具額定壓力為160mmH2O時,從水壓式沼氣池至灶前的管路管徑和管路允許長度如下:

內徑10mm或12mm(二灶),管路長可為30~50m。

7.2.3水壓式沼氣池的導氣管內徑應與管路內徑相同,并應選用耐蝕材質。

8管路排水

8.1凝水器

8.1.1地下管坡度的最低點設置凝水器。

8.1.1.1當采用低壓凝水器時,凝水器的抽水管下端應成450的坡口,并與凝水器底保持有20mm的間隙,便于凝水器中積水,通過抽水管從排水井排出。

8.1.1.2當采用自動排水裝置時,U形管長應大于壓力表“U”形管5cm,排水壓力小于正常產氣壓力。排水口露出地面。

8.1.2室內水平管段的坡腳或直立管的下端可裝積水瓶或留有長10cm的存水段。

8.2排水井

排水井的位置應選擇在操作方便、不被堆沒的地方。排水井的蓋應與地面平齊。

9閥(開關)

9.1沼氣管路上的開關應采用易識別開關狀況的快開閥,分中間閥和終端閥二種類型。

9.2閥應選用氣密性能可靠、經久耐用并通過鑒定的產品,閥孔孔徑應不小于5mm。

9.3下列位置應設置操作閥:

9.3.1燃具膠皮管的前端(終端閥)。

9.3.2水壓式池的U形壓力計的前側(終端閥)。

9.3.3貯氣袋進氣側的室內管路和沼氣燈的分支立管(中間閥)。

9.3.4集的罩沼氣池、分離工沼氣池的輸氣管路起點(中間閥)。

10管路氣密性和壓降試驗

10.1管路投入運行前,應進行氣密性試驗。試驗時用空氣作介質,試驗壓力對有貯氣裝置的管路為管路工作壓力(即貯氣壓力)的二倍,不壓式池為1000mmH2O、以保持5minU形壓力計讀數不變為合格。

10.2水壓式池應進行壓降試驗。以灶前壓力達到灶具額定壓力時,管路起點壓力不超過300mmH2O為標準。設有貯氣裝置的池子,須校驗貯氣壓力:濕式貯氣裝置應高于灶具額定壓力40mmH2O;干式貯氣裝置(氣袋)應高于灶具額定壓力20mmH2O。

油壓機的分類:

油壓機的原來也就是一個液壓系統的原理

*液壓泵是液壓系統的動力源,是靠泵的作用力使液壓油通過液壓管路進入油缸/活塞

*然后油缸/活塞里有幾組互相配合的密封件,不同位置的密封都是不同的,但都起到密封的作用,使液壓油不能泄露。

*最后通過單向閥使液壓油在油箱循環使油缸/活塞循環做功。

這基本上就是一個簡單的液壓系統了。

油壓機簡介:

油壓機由主機及控制機構兩大部分組成。油壓機主機部分包括機身、主缸、頂出缸及充液裝置等。動力機構由油箱、高壓泵、低壓控制系統、電動機及各種壓力閥和方向閥等組成。動力機構在電氣裝置的控制下,通過泵和油缸及各種液壓閥

實現能量的轉換,調節和輸送,完成各種工藝動作的循環。液壓缸:將液壓能轉化為機械能

液壓傳動是利用液體壓力來傳遞動力和進行控制的一種傳動方式. 液壓裝置是由液壓泵,液壓缸,液壓控制閥和液壓輔助元件。

輔助元件:1、油箱:用來儲油,散熱.分離油中空氣和雜質作用 2、油管及油管接頭 3、濾油器 4、壓力表 5、密封元件

油壓機的分類:

1.按傳遞壓強的液體種類來分,有油壓機和水壓機兩大類

水壓機產生的總壓力較大,常用于鍛造和沖壓。鍛造水壓機又分為模鍛水壓機和自由鍛水壓機兩種。模鍛水壓機要用模具,而自由鍛水壓機不用模具.

2.油壓機按結構形式現主要分為:四柱柱液壓機、單柱液壓機、小型液壓機、臥式油壓機、立式框架油壓機等

控制閥:控制液壓油的流量,流向,壓力,液壓執行機構的工作順序等及保護液壓回路作用.講的通俗一點就是控制和調節液壓介質的流向,壓力和流量.從而控制執行機構的運動方向,輸出的力或力矩.運動速度.動作順序,以及限制和調節液壓系統的工作壓力,防止過載等作用(如單向閥,換向閥,溢流閥,減壓閥,順序閥,節流閥.調速閥等

液壓泵:將機械能轉換成液壓能的轉化裝置.

油壓機壓制工安全操作規程:

1.操作者應熟悉油壓機的一般性能和結構,禁止超負荷使用。 2.使用前,應按規定潤滑加油,檢查高壓泵、壓力表、各種閥、密封圈等是否正常。 3.開機前,應檢查模具是否配套,料重是否符合要求,稱料工具是否準確。 4.壓制時,摸具必須放在墊板中心位置,禁止偏心使用。每班開機前,試壓后,應檢查一次模具是否有裂損。 5.多人操作時,要有專人開機,相互協調配合。 6.嚴禁將手,頭置于模具與壓頭之間。 7.工作完畢,應將壓制品、工具、模具整理好并放到指定地方。

企業動態 行業資訊 媒體報道 其它新聞 第三屆中國(佛山)機械裝備展覽會機械展 當前國外噴氣織機的自動化技術水平 工業自動化領域的光輝歲月 中國工程機械大卻不強 機械行業:工程機械產銷繼續快增 中國軸承業面臨巨大發展新機遇 機床行業:數控機床需量旺盛 四川地震后,工程機械短期需量大 機床業發展更傾理性化、合理化 復合加工機床的發展現狀淺析 08年第一季度金屬加工機床進出口情況 包裝機械產商如何面對原料價漲 2008中山機床模具、塑膠包裝展 沖床知識-沖床的構造是什么? 如何選擇高速沖床 小型多用途機械中外融合成潮流 小型工程機械的發展特點 沖床上安裝模具的過程 沖床操作安全知識 沖壓工藝在汽車制造中的應用 沖床現狀 機械壓力機 我國壓力機發展過程(二) 我國壓力機發展過程(一) 壓力機的概述 剪板工序的準備工作 中國剪板機行業做大做強科技含量是關鍵 機械制造和機械自動化的發展方向和趨勢 精密高速沖床機械特性 我國自由鍛液壓機和大型鍛件生產的發展歷程 中國鍛壓設備的一場革新 橢圓剪板機裝置及誤差分析 鍛壓機械 油壓機 剪板機 沖床沖壓力計算公式 高速沖床隔聲降噪技術 剪板機操作規程

油井采油技術是什么?

油井試油并確認具有工業開采價值后,如何最大限度地將地下原油開采到地面上來,實現合理、高產、穩產,選擇合適的采油工藝方法和方式十分重要。目前,常用的采油方法有自噴采油和機械采油(見圖5-1)。

圖5-1采油方法分類

一、自噴采油

依靠油層自身能量,將石油從油層驅入井底,并由井底舉升到地面,這樣的生產方式稱自噴采油。依靠自噴方法生產的油井稱為自噴井。自噴井地面設備簡單、操作方便,產量較高,采油速度快,經濟效益好。

(一)自噴井采油原理

1.原理油井之所以能夠自噴是由于地層能量充足。地層能量的高低就反映在油層壓力的高低。當地層打開之后,原油在較高的地層壓力作用下,從地層深部向井底流動,克服了地層的滲濾阻力,剩余后的壓力是井底壓力。原油在井底壓力作用下,沿著井筒從井底流到井口,同時溶解在原油中的天然氣開始分離出來,氣體也會成為舉升原油的能量。

2.自噴井的四種流動過程

自噴油流從油層流到地面轉油站可以分為四個基本流動過程——地層滲流、井筒多相管流、嘴流、水平管流,如圖5-2所示。

(1)地層滲流:從油層流入井底,流體是在多孔介質中滲流,故稱滲流。如果井底壓力大于飽和壓力,為單相滲流;如果井底壓力小于飽和壓力,為多相滲流。在滲流過程中,壓力損失約占總壓降的10%~15%。

(2)井筒多相管流:即垂直管流,從井底到井口,流體在油管中上升,一般在油管某斷面處壓力已低于飽和壓力,故屬于油、氣或油、氣、水多相流。垂直管流壓力損失最大,占總壓降的30%~80%。

(3)嘴流:通過油嘴的流體稱為嘴流。嘴流流速較高,其壓力損失占總壓降的5%~30%。

(4)水平管流:流體進入出油管線后,沿地面管線流動,屬多相水平管流。水平管流壓力損失一般占總壓降的5%~10%。

圖5-2自噴井的四種流動過程

1—地層滲流;2—井筒多相管流;3—嘴流;4—水平管流

四個流動過程之間既相互聯系又相互制約,同處于一個動力系統。從油層流到井底的剩余壓力稱井底壓力(井底流動壓力)。對某一油層來說,在一定的開采階段,油層壓力穩定于某一數值不變,這時井底壓力變大,油井的產出量就會減少;井底壓力變小,則油井產量就會增加。可見,在油層滲流階段,井底壓力是阻力,而對垂直管流階段,井底壓力是把油氣舉出地面的動力。把油氣推舉到井口后剩余的壓力稱為井口油管壓力。井口油管壓力對油氣在井內垂直管流來說是一個阻力,而對嘴流來說又是動力。

3.垂直管流中的能量來源與消耗

由于壓力損失主要消耗在垂直管流中,下面重點介紹垂直管流。

1)單相垂直管流

當油井的井口壓力大于原油的飽和壓力時,井中為單相原油。流出井口后壓力低于飽和壓力時,天然氣才從原油中分離出來,這樣的油井屬于單相垂直管流。

單相垂直管流的能量來源是井底流動壓力。能量主要消耗在克服相當于井深的液柱壓力,及液體從井底流到井口過程中垂直管壁間的摩擦阻力。所以,單相垂直管流中,能量的供給與消耗關系可用下列壓力平衡式表示:

pf=pH+pfr+pwh

式中pf——井底流動壓力;

pH——液柱壓力;

pfr——摩擦阻力;

pwh——井口壓力。

2)多相垂直管流

當井底流動壓力低于飽和壓力時,則油氣一起進入井底,整個油管為油氣兩相。當井底流動壓力高于飽和壓力,但井口壓力低于飽和壓力時,則油中溶解的天然氣在井筒中某一高度上,即飽和壓力點的地方開始分離出來,井中存在兩個相區,下面是單相區,上面是兩相區。在兩相區,氣體從油中分離出來并膨脹,不斷釋放出氣體彈性膨脹能量,參與舉升。因此,多相垂直管流中能量的來源,一是進入井底的液氣所具有的壓能(即流壓);二是隨同油流進入井底的自由氣及舉升過程中從油中分離出來的天然氣所表現的氣體膨脹能。氣體的膨脹能是通過兩種方式來利用的:一種是氣體作用于液體上,垂直推舉液體上升;另一種是靠氣體與液體之間的摩擦作用,攜帶液體上升。

(二)自噴井采油設備

自噴采油設備包括井口設備和地面流程設備。

1.井口設備

自噴井井口裝置從下到上依次是套管頭、油管頭和采油樹三部分,如圖5-3所示。自噴井的井口設備是其他各類采油井的基礎設備,其他采油方式的井口裝置都是以此為基礎。

圖5-3自噴井井口結構圖

1—清蠟閘門;2—生產閘門;3—油管頭四通;4—總閘門;5—套管四通;6—套管閘門;7—回壓閘門;8—防噴管;9—油嘴套;10—油壓表;11—回壓表;12—套壓表;13—單流閥;14—套管頭;15—取樣閥門;16—油管頭

1)套管頭

套管頭在井口裝置的下端,是連接套管和各種井口裝置的一種部件,由本體、套管懸掛器和密封組件組成。其作用是支持技術套管和油層套管的重力,密封各層套管間的環形空間,為安裝防噴器、油管頭和采油樹等上部井口裝置提供過渡連接,并通過套管頭本體上的兩個側口可以進行補擠水泥、監控井液和平衡液等作業。

2)油管頭

油管頭安裝于采油樹和套管頭之間,其上法蘭平面為計算油補距和井深數據的基準面。其作用是支撐井內油管的重力;與油管懸掛器配合密封油管和套管的環形空間;為下接套管頭、上接采油樹提供過渡;并通過油管頭四通體上的兩個側口(接套管閥門),完成注平衡液及洗井等作業。

3)采油樹

采油樹是指油管頭以上的部分,連接方式有法蘭式和卡箍式。采油樹的作用是控制和調節油井生產,引導從井中噴出的油氣進入出油管線,實現下井工具儀器的起下等。

采油樹的主要組成部件及附件的作用如下:

(1)總閘門:安裝在油管頭的上面,用于控制油氣流入采油樹的通道,因此,在正常生產時它都是全開的,只有在需要長期關井或其他情況下才關閉。

(2)油管四通(或三通):其上下分別與清蠟閘門和總閘門相連,兩側(或一側)與生產閘門相連。它既是連接部件,也是油氣流出和下井儀器的通道。

(3)生產閘門:安裝在油管四通或三通的兩側,其作用是控制油氣流向出油管線。正常生產時,生產閘門總是打開的,在更換檢查油嘴或油井停產時才關閉。

(4)清蠟閘門:安裝在采油樹最上端的一個閘門。正常生產時保持開啟狀態以便觀察油管壓力,它的上面可連接清蠟或試井用的防噴管,清蠟或試井時打開,清蠟或試井后關閉。

(5)套管四通:其上面與總閥門相通,下部連接套管頭,左右與套管閘門相連。它是油管套管匯集分流的主要部件。通過它密封油套環空、油套分流。外部是套管壓力,內部是油管壓力。

(6)回壓閘門:安裝在油嘴后的出油管線上,在檢查和更換油嘴以及維修生產閘門及修井作業時關閉,以防止出油管線內的流體倒流,有的油井在此位置上裝了一個單流閥代替了回壓閘門。

(7)防噴管:防噴管是用φ63mm(2.5in)油管制成,外部套φ89mm(3.5in)管,環空內循環蒸汽或熱水(油)保溫(不保溫循環的就不用外套),在自噴井中有兩個作用:一是在清蠟前后起下清蠟工具及溶化刮蠟片帶上來的蠟;二是各種測試、試井時的工具起下。

(8)單流閥:防止流出井口原油倒流回井筒。

2.地面流程主要設備

一般來說,自噴井井口地面流程都安裝一套能夠控制、調節油氣產量的采油樹;還有對油井產物和井口設備加熱保溫的一套裝置,以及計量油氣產量的裝置,主要包括加熱爐、油氣分離器、高壓離心泵及地面管線等。這一系列流程設備對其他采油方式也具有通用性。

二、機械采油

在油田開發過程中,由于油層本身壓力就很低,或由于開發一段時間后油層壓力下降,使油井不能自噴或不能保持自噴,有時雖能自噴但產量很低,必須借助人為能量進行采油,即利用一定的機械設備(地面和井下)將井中油氣采至地面的方法。機械采油可分為有桿泵采油和無桿泵采油兩大類。

(一)有桿泵采油

有桿泵采油裝置包括游梁式抽油機—深井泵裝置和地面驅動螺桿泵抽油裝置。

1.游梁式抽油機—深井泵裝置

1)游梁式抽油機

游梁式抽油機結構見圖5-4。它是有桿泵采油的主要地面機械傳動裝置。它和抽油桿、深井泵配合使用,能將原油抽到地面。使用抽油裝置的油井通常稱為“抽油井”。抽油機的工作特點是連續運轉、長年在野外、無人值守。因此,對抽油機的要求應當是強度高、使用壽命長、有一定的超載能力、安裝維修簡單、適應性強。

圖5-4游梁式抽油機結構圖

1—懸蠅器;2—毛辮子;3—驢頭;4—游梁;5—支架軸;6—橫梁軸;7—橫梁;8—連桿;9—平衡塊;10—曲柄;11—大皮帶輪;12—皮帶;13—電動機;14—輸入軸;15—輸出軸;16—曲柄銷;17—支架;18—底座;19—光桿

(1)主要部件的作用。

①驢頭:裝在游梁的前端,其作用是保證抽油時光桿始終對準井口中心位置。驢頭的弧線是以支架軸承為圓心、游梁前臂長為半徑畫弧而得到的。

②游梁:游梁固定在支架上,前端安裝驢頭承受井下負荷,后端連接連桿、曲柄、減速箱傳送電動機的動力。

③曲柄—連桿機構:它的作用是將電動機的旋轉運動變成驢頭的上下往復運動。在曲柄上有4~8個孔,是調節沖程時用的。

④減速箱:它的作用是將電動機的高速旋轉運動變成曲柄軸的低速轉動,同時支撐平衡塊。

⑤平衡塊:平衡塊裝在抽油機游梁尾部或曲柄軸上。它的作用是:當抽油機上沖程時,平衡塊向下運動,幫助克服驢頭上的負荷;在下沖程時,電動機使平衡塊向上運動,儲存能量。在平衡塊的作用下,可以減少抽油機上下沖程的負荷差別。

⑥懸繩器:它是連接光桿和驢頭的柔性連接件,還可以供動力儀測示功圖用。

(2)工作原理。

電動機將其高速旋轉運動通過皮帶和減速箱傳給曲柄軸,并帶動曲柄軸作低速旋轉運動;曲柄又通過連桿經橫梁帶動游梁上下擺動。游梁前端裝有驢頭,掛在驢頭上的懸繩器便帶動抽油桿作上下垂直往復運動,抽油桿帶動活塞運動,從而將原油抽出井筒。

2)深井泵

深井泵是油井的核心抽油設備,它是通過抽油桿和油管下到井中并沉沒在液面以下一定深度,靠抽吸作用將原油送到地面。

深井泵主要由工作筒(包括外筒和襯套)、活塞、游動閥(排出閥)及固定閥(吸入閥)組成,其工作原理見圖5-5。

圖5-5泵的工作原理圖

1—排出閥;2—活塞;3—襯套;4—吸入閥

上沖程:驢頭上行,抽油桿柱帶著活塞上行,活塞上的游動閥受內液柱的壓力而關閉。如管內已經充滿液體,則將在井口排出相當于活塞沖程長度的一段液體。與此同時,活塞下面泵筒內的壓力降低,當泵內壓力低于沉沒壓力(環行空間液柱壓力)時,在沉沒壓力的作用下固定閥被打開,原油進入泵內占據活塞所讓出的體積,如圖5-5(a)所示。

下沖程:驢頭下行,抽油桿柱帶著活塞向下運動,吸入泵內的液體受壓,泵內壓力升高。當此壓力與環形空間液柱壓力相等時,固定閥靠自重而關閉。在活塞繼續下行中,泵內壓力繼續升高,當泵內壓力超過活塞以上液柱壓力時,游動閥被頂開,活塞下部的液體通過游動閥進入上部油管中,即液體從泵中排出,如圖5-5(b)所示。

3)抽油桿及井口裝置

(1)抽油桿。

抽油桿是抽油裝置的重要組成部分,它上連抽油機,下接深井泵,起中間傳遞動力的作用。抽油桿的工作過程中受到多種載荷的作用,且上下運動過程中受力極不均勻,上行時受力大,下行時受力小。這樣一大一小反復作用的結果,很容易使金屬疲勞,使抽油桿產生斷裂。因此,要求抽油桿強度高、耐磨、耐疲勞。

抽油桿一般是由實心圓形鋼材制成的桿件。兩端均有加粗的鍛頭,下面有連接螺紋和搭扳手用的方形斷面。抽油桿柱最上面的一根抽油桿稱為光桿。光桿與井口密封填料盒配合使用,起密封井口的作用。

(2)井口裝置。

抽油井井口裝置和自噴井相似,承受壓力較低。它主要由套管四通(或套管三通)、油管四通(或油管三通)、膠皮閘門和光桿密封段(或密封填料盒)組成,其他附件的多少及連接方法,視各油田的具體情況而定。但無論采取什么形式,抽油井井口裝置必須具備能測示功圖、動液面,能取樣、觀察壓力等功能,并且要方便操作和管理。圖5-6是抽油井摻水井口裝置。

圖5-6抽油機摻水井口裝置

1—膠皮閘門;2—油管放空閥門;3—總閘門;4—套管測試閘門;5—套管閘門;6—回壓閘門;7—直通閥門(小循環);8—熱洗閥門;9—摻水閥門(大循環);10—單流閥;11—摻水調節閥;12—生產閘閥門;13—油壓表;14—光桿密封段;15—套壓表;16—套管出液閥

2.地面驅動螺桿泵抽油裝置

20世紀70年代后期,螺桿泵開始應用于原油開采。螺桿泵是一種容積式泵,按驅動形式可分為地面驅動螺桿泵和井下驅動螺桿泵。

地面驅動螺桿泵設備如圖5-7所示。它是由地面驅動系統、抽油桿柱、抽油桿柱扶正器、螺桿泵等部分組成。其工作原理是:螺桿泵是靠空腔排油(即轉子與定子間形成的一個個互不連通的封閉腔室),當轉子轉動時,封閉空腔沿軸線方向由吸入端向排出端方向運移。封閉腔在排出端消失,空腔內的原油也就隨之由吸入端均勻地擠到排出端,同時又在吸入端重新形成新的低壓空腔將原油吸入。這樣,封閉空腔不斷地形成、運移和消失,原油便不斷地充滿、擠壓和排出,從而把井中的原油不斷地吸入,通過油管舉升到井口。

圖5-7螺桿泵采油示意圖

1—電控箱;2—電動機;3—皮帶;4—減速箱;5—方卡子;6—專用井口;7—套壓表;8—抽油桿;9—油管;10—抽油桿扶正器;11、16—油管扶正器;12—定子;13—轉子;14—定位銷;15—油管防脫裝置;17—篩管;18—套管;19—絲堵

螺桿泵采油裝置結構簡單,占地面積小,有利于海上平臺和叢式井組采油;只有一個運動件(轉子),適合稠油井和出砂井應用;排量均勻,無脈動排油特征;閥內無閥件和復雜的流道,水力損失小;泵實際揚程受液體黏度影響大,黏度上升,泵揚程下降較大。

(二)無桿泵采油

無桿泵采油包括氣舉采油、電動潛油離心泵采油、井下驅動螺桿泵采油、水力活塞泵采油和射流泵采油。

1.氣舉采油

當油氣能量不足以維持油井自噴時,為使油井繼續出油,人為地將氣體(天然氣或空氣)壓入井底,利用氣體的膨脹能量將原油升舉到地面,這種采油方法稱為氣舉采油法。氣舉方式有環形空間進氣方式和中心進氣方式兩種。

氣舉采油法的井口、井下設備比較簡單,管理調節與自噴井一樣方便。

1)氣舉原理

以環形空間進氣方式為例。油井停產時,油管、套管內的液面在同一個位置上。開動壓風機向油套環形空間注入壓縮氣體(空氣或天然氣),環形空間液面被擠壓向下(如果不考慮液體被擠進油層,則環形空間內的液體全部進入油管),油管內液面上升,當環形空間的液面下降到管鞋時,壓風機達到最大壓力,稱為氣舉啟動壓力。當壓縮氣進入油管后,油管內原油混氣,液面不斷升高,直至噴出地面。

在開始噴出之前,井底壓力總是大于油層壓力。噴出之后,由于環形空間繼續壓入氣體,油管內混氣液體不斷噴出,使混氣液體的密度也越來越小,管鞋壓力急劇下降。當井底壓力低于油層壓力時,原油便從油層流入井底。由于油層出油,使油管內混氣液體的重度稍有增加,因而使壓縮機的壓力又有所上升,經過一段時間后趨于穩定,穩定后的壓風機壓力稱為氣舉工作壓力。這時,油層連續不斷地穩定出油,井口連續不斷地生產。

2)氣舉方式

氣舉方式有兩種:

(1)環形空間進氣方式。該氣舉方式也稱反舉。它是指壓縮氣體從油套環形空間注入,原油從油管中舉出。

(2)中心進氣方式。它與環形空間進氣方式正好相反,即從油管注氣,原油從油套環形空間返出。該氣舉方式也稱正舉。

當油中含蠟、含砂時,如采用中心進氣,因油流在環形空間流速低,砂子易沉降下來,同時在管子外壁的蠟也難清除,所以在實際工作中,多采用環形空間進氣方式。

3)氣舉采油的特點

氣舉采油的優點:井下設備一次性投資低,維修工作量小;井下無摩擦件,適宜于含砂、蠟、水的井;不受開采液體中腐蝕性物質和高溫的影響;易于在斜井、拐彎井、海上平臺使用;易于集中管理和控制。缺點:氣舉采油必須有充足的氣源;如在高壓下連續氣舉工作,安全性較差;套管損壞了的高產井、結蠟井和稠油井不宜采用氣舉;小油田和單井使用氣舉采油效果較差。

圖5-8潛油電泵井裝置示意圖

2.電動潛油離心泵采油

電動潛油離心泵(簡稱潛油電泵或電泵)屬于無桿泵抽油設備。它是用油管把離心泵和潛油電動機下入井中,用潛油電動機帶動離心泵把油舉升到地面。電泵的排量及揚程調節范圍大,適應性強,地面工藝流程簡單,管理方便,容易實現自動化,經濟效益高。

電泵設備由地面、中間和井下三大部分組成,如圖5-8所示。

地面部分由變壓器、接線盒、控制柜(配電盤)、電纜及井口裝置等組成,主要起控制、保護、記錄的作用。

中間部分主要是電纜,有動力電纜和引線電纜。動力電纜將地面電流傳送到井下引線電纜;而引線電纜的作用是連接動力電纜和電動機。

井下部分一般自上而下依次是泄油閥、單流閥和井下機組。井下機組包括多級離心泵、油氣分離器、保護器和潛油電動機。有的電泵井潛油電動機下部還裝有監測裝置,可測定井底壓力、溫度、電動機絕緣程度、液面升降情況,并將信號傳送給地面控制臺。

潛油電動機安裝在井下機組的最下部,是電泵的動力。地面的高壓電流經電纜傳輸給潛油電動機。潛油電動機把電能變為機械能輸出,通過軸帶動電泵工作。保護器安裝在潛油電動機的上部,起平衡電動機中的壓力,潤滑、密封電動機的作用。油氣分離器通常安裝在保護器的上端、多級離心泵的下端,用來分離原油中的游離氣體,提高泵效。多級離心泵由固定部分和轉動部分組成。轉動部分有泵軸,軸上安裝有大量葉輪。當電動機帶動泵軸上的葉輪高速旋轉時,充滿在葉輪內的液體在離心力的作用下,被甩向葉輪的四周,給井液加速,使井液具有動能,并由導殼引入次一級葉輪,這樣逐級疊加后就獲得一定揚程,并將井液舉升到地面。

電泵機組的工作過程可簡單地敘述為:地面電源通過潛油電泵專用電纜輸入給井下的潛油電動機,潛油電動機就帶動多級離心泵旋轉,通過離心泵多級葉輪的旋轉離心作用,將井底原油舉升抽汲到地面。

實踐表明,對于強水淹井、高產井、不同深度井以及定向井、多砂和多蠟井,電泵的使用效果都很好。其排量范圍為16~14310m3/d;最大下泵深度可達4600m,井下最高工作溫度可達230℃。

3.井下驅動螺桿泵采油

與地面驅動螺桿泵不同的是,井下驅動螺桿泵動力置于井底,不用抽油桿。其工作原理是:用油管將泵與電動機、保護器下入井內液面以下,電動機通過偏心聯軸節帶動螺桿轉動,而螺桿又是裝在襯套中,螺桿與襯套所形成的腔室之間是隔離的,當螺桿轉動時,這些腔室逐漸由下而上運動,使液體壓力不斷提高,從而將井液送到地面。

就目前的情況來看,地面驅動螺桿泵從技術上比較成熟;井下驅動螺桿泵有很多優點,但還處于實驗階段。

4.水力活塞泵采油

水力活塞泵是一種液壓傳動的無桿泵抽油裝置,是液壓傳動在抽油設備上的應用。與有桿泵相比,其根本特點是改變了能量的傳遞方式。水力活塞泵由地面、中間和井下三大部分組成,如圖5-9所示。

圖5-9開式水力活塞泵采油系統

1—高壓控制管匯;2—地面動力泵;3—發動機;4—動力液處理罐;5—井口裝置;6—井下泵工作筒;7—沉沒泵

地面部分包括動力液處理罐、發動機、地面動力泵、高壓控制管匯、閥組及井口裝置,擔負提供動力的任務。

中間部分是動力液由地面到井下機組的中心油管,乏動力液和產出液排至地面的專門通道。

井下部分由工作筒和沉沒泵等組成,起抽油的主要作用。

水力活塞泵的工作原理是:電動機帶動地面動力泵,從儲液罐來的液體經動力泵升壓后進入中心油管,高壓動力液體進入井下的水力活塞泵后,帶動泵工作,抽汲的液體和做功后的動力液共同經外層油管返回地面。

水力活塞泵排量范圍較大(16~1600m3/d),對油層深度、含蠟、稠油、斜井及水平井具有較強的適應性,可用于各種條件的油井開采,并可在溫度相對較高的井內工作。但機組結構復雜,加工精度要求高,動力液計量困難。

圖5-10射流泵工作原理圖

5.射流泵采油裝置

射流泵分為地面部分、中間部分和井下部分。其中地面部分和中間部分與水力活塞泵相同,所不同的是水力噴射泵只能安裝成開式動力液循環系統。井下部分是射流泵,由噴嘴、喉管和擴散管三部分組成,如圖5-10所示。

射流泵的工作原理:動力液從油管注入,經射流泵的上部流至噴嘴噴出,進入與地層液相連通的混合室。在噴嘴處,動力液的總壓頭幾乎全部變為速度水頭。進入混合室的原油則被動力液抽汲,與動力液混合后流入喉管,在喉管內進行動量和動能轉換,然后通過斷面逐漸擴大的擴散管,使速度水頭轉換為壓力水頭,從而將混合液舉升到地面。

射流泵的特點:井下設備沒有動力件;射流泵可坐入與水力活塞泵相同的工作筒內;不受舉升高度的限制;適于高產液井;初期投資高;腐蝕和磨損會使噴嘴損壞;地面設備維修費用相當高。

橋塞的永久式橋塞封層工藝

永久式橋塞形成于80年代初期,由于它施工工序少、周期短、卡封位置準確,所以一經問世就在油氣井封層方面得到了廣泛應用,基本上取代了以前打水泥塞封層的工藝技術,成為試油井封堵已試層,進行上返試油的主要封層工藝。

在中淺層試油施工中出現的干層、水層、氣層及異常高壓等特殊層位,為方便后續試油,封堵廢棄層位,通常采用該類橋塞進行封層,同時對于部分短期無開發計劃的試油結束井也采用永久式橋塞封井。此外,該橋塞也用于深層氣井的已試層封堵,為上返測試、壓裂改造等工藝技術的成功實施提供保障。 利用電纜或管柱將其輸送到井筒預定位置,通過火藥爆破、液壓坐封或者機械坐封工具產生的壓力作用于上卡瓦,拉力作用于張力棒,通過上下錐體對密封膠筒施以上壓下拉兩個力,當拉力達到一定值時,張力棒斷裂,坐封工具與橋塞脫離。此時橋塞中心管上的鎖緊裝置發揮效能,上下卡瓦破碎并鑲嵌在套管內壁上,膠筒膨脹并密封,完成坐封。

結構與特點:

永久式橋塞外觀圖見圖1,結構有如圖2所示幾個部分組成: ①結構簡單,下放速度快,可用于電纜、機械或者液壓坐封。

②可坐封于各種規格之套管。

③整體式卡瓦可避免中途坐封。

④采用雙卡瓦結構,齒向相反,實現橋塞的雙向鎖定,從而保持坐封負荷,壓力變化亦可保證密封良好。

⑤球墨鑄件結構易鉆除。

⑥施工工序少、周期短、卡封位置準確、深度誤差小于1m,特別是封堵段較深、夾層很薄時更具有明顯的優越性。 ①工作溫度:120℃-170℃。

②工作壓力:35Mpa,50Mpa,70Mpa。

③坐封力: 140~270kN。

④適用套管:127mm~244.5mm 永久式橋塞根據下井方式,分為電纜輸送和油管輸送兩種。

a、電纜輸送可鉆橋塞的施工步驟和注意事項: ①用電纜將專用的捕撈器下至橋塞坐封深度以下,目的是檢查套管內徑,撈出井內液體中影響順利下入的雜物,捕撈器的外形尺寸等于或稍大于橋塞的外形尺寸。

②將橋塞、坐封工具、安全接頭、磁性定位器與電纜連接好,平穩下入井內,下放速度在4000m/h以內。

③測套管接箍,準確調整橋塞坐封位置。

④通電引爆,坐封橋塞,引爆5min后上提、下放電纜2~4m,判斷橋塞是否已坐封。

⑤起出坐封工具,在工具提出井口前,須檢查泄壓頭是否沖掉,防止拆卸時殘余壓力傷人。

⑥橋塞坐封后,井口密封接好試壓管線按要求進行試壓,驗證其密封的可靠性。

⑦試壓合格后,下倒灰筒,在橋塞頂部倒入一定量的水泥漿。 ①施工前,必須認真檢查電纜、絞車、儀表和下井的工具儀器。

②雷管、炸藥包等易燃易爆品,必須按規定嚴格保管、運輸和使用。

③套管必須經過刮削或用標準的通井規通過。

④井內液體要經過過濾,保證無雜物。

⑤橋塞下放速度必須嚴格控制,若有遇阻現象,只能慢慢活動,不能猛沖。

b、油管輸送橋塞是針對大斜度井、定向井和稠油井下電纜橋塞常出現遇阻的情況而開發研制的。與電纜橋塞相比,僅僅是輸送方式和坐封方式不同。

油管輸送橋塞是用油管或鉆桿將橋塞下至預定位置,由地面加壓坐封,施工步驟、安全注意事項等與電纜橋塞大體相同。

紅外傳感器傳回來的電壓只有1.6v,接到單片機I/O口不能使該口邏輯為1怎么辦???

用光耦就能很好的解決這個問題!如圖,吧你的信號接在輸入端的1,2接地,輸出端改進下就能實現了,軟件沒法解決這個問題的! (樓上的腦子進水了)

很赞哦!(863)

Instagram刷粉絲, Ins買粉絲自助下單平台, Ins買贊網站可微信支付寶付款的名片

职业:程序员,设计师

现居:湖北咸宁崇阳县

工作室:小组

Email:[email protected]