您现在的位置是:Instagram刷粉絲, Ins買粉絲自助下單平台, Ins買贊網站可微信支付寶付款 > 

高壓油管結構示意圖(什么是無桿泵采油?)

Instagram刷粉絲, Ins買粉絲自助下單平台, Ins買贊網站可微信支付寶付款2024-05-26 13:26:50【】2人已围观

简介柴油機高壓共軌結構原理及示意圖工作原理、結構構造與傳統機大致一樣。區別:前者只有一個噴油泵,一個高壓共軌管蓄壓大致350公斤以上,然后由高壓油管分至各缸,油頭開啟、關閉由直流電磁閥控制,信號由飛輪轉角

柴油機高壓共軌結構原理及示意圖

工作原理、結構構造與傳統機大致一樣。

區別:前者只有一個噴油泵,一個高壓共軌管蓄壓大致350公斤以上,然后由高壓油管分至各缸,油頭開啟、關閉由直流電磁閥控制,信號由飛輪轉角傳感器供給。一般是雙頂置凸輪,排氣系統帶EGR甚至帶增加器,轉速在10萬RPM。

優點:定時準確,方便電腦調整提前角,保證穩定的最大爆炸壓力,機械效率、熱效率提高。

劣勢:配件貴,保養復雜。尤其是油頭必須更換總成,不可單獨更換噴油嘴。

稠油摻稀氣舉井身結構示意圖【淺析稠油水平井沖砂工藝技術】

【摘 要】我國現階段陸上常規油氣田大多數處于開采后期,隨著常規原油受到儲量增長的限制,開采稠油油藏顯得更加重要。但由于粘度高,密度大、地層壓力低、油砂膠結強等原因,常規沖砂工藝無法將砂沖出,沖砂成為稠油水平井生產的難題。本文針對稠油開采特點,就稠油水平井沖砂工藝技術進行了淺要的分析。

【關鍵詞】稠油開發;水平井沖砂;工藝研究;技術現狀

1.引言

石油是重要的能源資源,對國家經濟發展、民生需求以及國家安全都有著極為重要的意義,隨著常規原油的大量開采,其儲量迅速降低,稠油成為許多國家尤其是加拿大、美國、中國、俄羅斯原油生產的重要組成部分。由于稠油不同于常規原油,粘度大、比重大、地層壓力低,采用常規開采方法開采較為困難。水平井泄油面積大、生產壓差小、采收率高,應用于稠油油藏開采效果顯著,因此被廣泛應用于稠油開采中。但是稠油油藏埋深淺,地層膠結強度低,高孔隙、高滲透,加上鉆井過程中破壞了地層應力結構,以及后期的不合理開發等等原因,造成地層出砂嚴重。致使油井減產、停產,嚴重時造成砂卡、套管損壞,油井報廢。由于地層高滲透漏失嚴重,常規水力沖砂方法難以建立循環,沖砂液在返出地面的過程中易沉降造成砂卡,到目前為止國內還沒有成熟、有效、經濟的稠油水平井沖砂工藝技術,即便采用沖縫或割縫防砂篩管完井工藝,細砂、粉沙也容易大量進入井筒,出砂問題嚴重,造成砂卡、砂埋問題導致停產,直接影響油井產量。本文針對稠油開采特點,就稠油水平井沖砂工藝技術進行了淺要的分析。

2.水平井沖砂技術難點

水平井鉆井技術始于上世紀30年代,并在80年代中期得到了迅速發展和完善,目前被廣泛應用于油田整體開發中,目前國內擁有水平井兩千余口,是當前稠油開采中常用的一種井身結構,并作為常規鉆井技術應用于幾乎所有類型油藏中。水平井井身結構是其成功實施的關鍵,且與地層壓力、完井方式、施工難度等有關。水平井井身結構通常情況下由四個部分組成,分別是垂直段、造斜段、穩斜段和水平段。油井在積砂之后,通常采用水力沖砂的方法,將井筒內的積砂沖散并攜砂循環至地面,但水平井這種結構相對于直井、定向井和叢式井,其沖砂更為復雜和特殊。采用常規水力沖砂技術在沖砂管柱下放上提中會受到阻礙,荷載的變化使得難以判斷井下情況,同時砂上返的過程中,極容易在傾斜部位重新堆積出現砂卡堵現象,且下部砂床難以清理,砂液易攜砂滲入地層,導致反復沖砂傷害儲層的問題。

3.稠油開發特點

稠油的瀝青質和膠質含量較高、粘度較大,因其密度較大也叫重油,如新疆的百重七油田即是一個典型的稠油油田,遼河油田也有許多稠油油藏。直觀上看,稀油可以如水一樣流動,而稠油則很難流動,其粘度隨溫度的變化改變較為顯著,因此在稠油開采和輸送中多采用熱力降低粘度的方法。就開采技術來講,稠油通常要求實施三次采油工藝方法,其成本相對較高。目前常用的開采技術有水驅開采和熱驅開采兩大類方法,目前主要采用蒸汽吞吐、蒸汽驅的開采方式,此外還有化學降粘法、電加熱法、SAGD等開采方式。稠油開采一直是一個世界性的技術難題,但隨著世界能源的緊缺,稠油資源卻是不可忽視的能源。在稠油舉升過程中,如采用有桿抽油,由于稠油粘度高含蠟量大,油管油流通道小,抽油管上下行負荷增加,極容易產生抽油桿卡死甚至斷裂等井下事故。而采用電潛泵生產,電潛泵排量大吸入口壓力低,極容易造成葉導輪流道堵塞,使泵排量下降增加電機負荷,甚至造成電機停機故障。

4.稠油水平井沖砂工藝

4.1 沖砂工藝分類

沖砂可分為沖套管砂和芯管砂兩種,如果油井濾砂管沒有損壞,對芯管沖砂處理后可以使油井恢復正常生產,如粉細砂堵塞濾砂管芯管,也可采用沖砂技術將濾砂管芯管內沉砂沖洗干凈的方法。對于水平井而言,套管沖砂可采用常規光管反循環沖砂技術,不過水平井需沖砂的井段較長,且在造斜段位置以后,垂向間距開始縮小,沖洗液攜帶的砂子容易產生沉降,尤其是不連續沖砂時極容易形成砂橋,影響沖砂效果甚至造成砂卡現象。目前主要采用水平井套管內沖砂工藝和水平井芯管內沖砂工藝兩大類。

4.2 水平井套管內沖砂工藝

水平井套管內沖砂工藝采用連續沖砂裝置,井口由高壓自封、工作筒和反沖洗閥組成,井下由安全閥和旋流沖砂器組成。管柱采用連續反沖洗方式,沖砂過程中管柱上端反沖洗閥封閉,液流從井口自封進入,返出液則從自封側孔排出,使用不停泵連續作業方式,旋流沖砂器高速旋轉形成旋流將沉砂攪動沖洗干凈,如勝利油田草20-平5井采用的7in旋流沖砂器+扶正器組合,即可實現連續沖砂段320m的沖砂能力,可沖出死油、沉砂和雜質。

4.3 水平井同心管射流負壓沖砂工藝

水平井同心管射流負壓沖砂工藝是由采油工藝研究院科研人員于2007年開始研究的,采用射流負壓沖砂器、同心管、同心管轉向器、雙立管、濾砂器等配套工具進行沖砂處理,這一技術主要應用于大井筒或低壓井等特殊井中。采用水平井同心管射流負壓沖砂工藝,沖砂液可在同心管內反復循環增加速度使其攜砂更為徹底,由于優化了攪砂噴嘴和舉升噴嘴,沖洗效率和舉升效率都得到了極大的提高,漏失和外溢現象得到了明顯的改善。同時采用脫油熱污水作為沖洗液,能有效的降低粘度且易于回收,成本較低,能有效解決稠油水平井沖砂問題,目前應用規模正在不斷擴大。

5.結束語

稠油開發一直是世界各國原油開采中的一個難題,雖然隨著科學的發展和技術的進步,不少難題都得到了有效的解決,但依然還有很多不足。稠油水平井沖砂問題即是稠油開采中的一個重要難題,極大的影響了稠油開采安全和開采效率,有必要進一步加強相關工藝技術的研究,從技術手段、工藝設備等多個方面入手,全面提高稠油水平井沖砂技術水平,進一步提高稠油開發能力。

參考文獻

[1]齊偉.淺談油田水平井沖砂技術研究與應用[J].神州,2011(23)

[2]王建民,方云等.淺層稠油水平井抗濾失修井液沖砂工藝研究與應用[J].西部探礦工程,2010(03)

[3]廖作才,張繼春,李振銀.新疆油田稠油開采技術應用綜述[J].化學工程與裝備,2008(08)

[4]馬永本,宋化遠,謝亞棟.稠油井不起管桿泵沖砂工藝技術研究與應用[J].石油地質與工程,2009(04)

噴油器總成有XY,ZH,HB是什么意思?

噴油器是一種加工精度非常高的精密器件,要求其動態流量范圍大,抗堵塞和抗污染能力強以及霧化性能好。噴油器接受ECU送來的噴油脈沖信號,精確的控制燃油噴射量。

噴油器的噴霧特性包括霧化粒度、油霧分布、油束方向、射程和擴散錐角等。這些特性應符合柴油機燃燒系統的要求,以使混合氣形成和燃燒完善,并獲得較高的功率和熱效率

噴油器簡介

編輯

電控噴油器是共軌系統中最關鍵和最復雜的部件,也是設計、工藝難度最大的部件。ECU通過控制電磁閥的開啟和關閉,將高壓油軌中的燃油以最佳的噴油定時、噴油量和噴油率噴入的燃燒室。為了實現有效的噴油始點和精確的噴油量,共軌系統采用了帶有液壓伺服系統和電子控制元件(電磁閥)的專用噴油器。

噴油器由與傳統噴油器相似的孔式噴油嘴、液壓伺服系統(控制活塞、控制量孔等) 、電磁閥等組成。 [1] 

噴油器

工作原理

編輯

柴油機噴油系統將燃油霧化,并分布在燃燒室內與空氣混合的部件。

它主要由噴油嘴和噴油器體組成,它在缸蓋上的安裝位置與角度取決于燃燒室的設計。

噴油器分為開式和閉式兩種。開式噴油器結構簡單,但霧化不良,很少被采用。閉式噴油器廣泛應用在各種柴油機上。柴油機在進氣行程中吸入的是純空氣。在壓縮行程接近終了時,

噴油器噴射脈寬

柴油經噴油泵將油壓提高到100MPa以上,通過噴油器噴入氣缸,在很短時間內與壓縮后的高溫空氣混合,形成可燃混合氣。由于柴油機壓縮比高(一般為16-22),所以壓縮終了時氣缸內空氣壓力可達3.5-4.5MPa,同時溫度高達750-1000K(而汽油機在此時的混合氣壓力會為0.6-1.2MPa,溫度達600-700K),大大超過柴油的自燃溫度。因此柴油在噴入氣缸后,在很短時間內與空氣混合后便立即自行發火燃燒。氣缸內的氣壓急速上升到6-9MPa,溫度也升到2000-2500K。在高壓氣體推動下,活塞向下運動并帶動曲軸旋轉而作功,廢氣同樣經排氣管排入大氣中。 [1] 

普通柴油機的是由發動機凸輪軸驅動,借助于高壓油泵將柴油輸送到各缸燃油室。這種供油方式要隨發動機轉速的變化而變化,做不到各種轉速下的最佳供油量。

共軌噴射式供油系統由高壓油泵、公共供油管、噴油器、電控單元(ECU)和一些管道壓力傳感器組成,系統中的每一個噴油器通過各自的高壓油管與公共供油管相連,公共供油管對噴油器起到液力蓄壓作用。工作時,高壓油泵以高壓將燃油輸送到公共供油管,高壓油泵、壓力傳感器和ECU組成閉環工作,對公共供油管內的油壓實現精確控制,徹底改變了供油壓力隨發動機轉速變化的現象。其主要特點有以下三個方面:

噴油器工作原理示意圖

1、噴油正時與燃油計量完全分開,噴油壓力和噴油過程由ECU適時控制。

2、可依據發動機工作狀況去調整各缸噴油壓力,噴油始點、持續時間,從而追求噴油的最佳控制點。

3、能實現很高的噴油壓力,并能實現柴油的預噴射。

相比起汽油機,柴油機具有燃油消耗率低(平均比汽油機低30%),而且柴油價格較低,所以燃油經濟性較好;同時柴油機的轉速一般比汽油機來得低,扭距要比汽油機大,但其質量大、工作時噪音大,制造和維護費用高,同時排放也比汽油機差。但隨著現代技術的發展,柴油機的這些缺點正逐漸的被克服。

結構原理

編輯

噴油器的類型與結構

a、按噴油口結構可分:軸針式、孔式。

b、按線圈電阻值:高阻(13~16Ω)、低阻(2~3Ω)。

c、按用途分:MPI用、SPI用。

d、按燃料位置:上端供油式、側面供油式

噴油器結構示意圖

噴油過程

a、噴油器相當于電磁閥。

b、通電時電磁線圈產生電磁力,銜鐵及針閥吸起,噴油器開啟,汽油經噴孔噴入進氣道或進氣管。

c、斷電時電磁力消失,銜鐵及針閥在復位彈簧的作用下將噴孔封閉,噴油器停止噴油。

d、噴油器的通電、斷電由電控單元以電脈沖控制。

e、噴油量由電脈沖寬度決定。脈沖寬度=噴油持續時間=噴油量。

f、一般針閥升程約為0.1mm,而噴油持續時間在2~l0ms范圍內。

分類

編輯

(1)軸針式電磁噴油器

噴油時銜鐵帶動針閥從其座面上升約0.1mm,燃油從精密間隙中噴出。 為使燃油充分霧化,針閥前端磨出一段噴油軸針。噴油器吸動及下降時間約為1~1.5ms。

(2) 球閥式電磁噴油器

球閥的閥針質量輕,彈簧預緊力大,可獲得更加寬廣的動態流量范圍。球閥具有自動定心作用,密封性好。同時,球閥簡化了計量部分的結構,有助于提高噴油量精度。

(3)片閥式電磁噴油器

質量輕的閥片和孔式閥座與磁性優化的噴油器總成結合起來,使噴油器不僅具有較大的動態流量范圍,而且抗堵塞能力較強。

(4)下部進油的噴油器

采用底部供油方式,由于燃油可圍繞閥座區經噴油器內腔從上部不斷的流出,對噴油器計量部位的冷卻效果十分明顯,故可有效的防止氣阻產生,提高汽車熱起動的可靠性。

此外,采用底部噴油的噴油器可省去燃油總管,并有利于降低成本。 [2] 

保養

編輯

噴油器工作700h左右應檢查調整一次。若開啟壓力低于規定值1Mpa以上或針閥頭部積碳嚴重時,則應卸出針閥放入清潔柴油中用木片刮除積碳,用細鋼絲疏通噴孔,裝后進行調試,要求同一臺機器的各缸噴油壓力差必須小于1Mpa。

為使噴油器噴入缸內的柴油能夠及時地完全燃燒,必須定期檢查油泵的供油時間。供油時間過早,車輛會出現起動困難和敲缸的故障;供油時間過遲,會導致排氣冒黑煙,機溫過高,油耗上升。

噴油器針閥偶件的配合精度極高,并且噴孔孔徑很小,因而必須嚴格按照季節變化選用規定牌號的清潔柴油,否則噴油器就不能正常工作。

清洗噴油器針閥偶件時不得與其它硬物相撞,也不可使其跌落在地,以免碰傷擦傷。更換噴油器針閥偶件時,應先將新偶件放入80℃的熱柴油中浸泡10 s左右,讓防銹油充分溶化后,再在干凈柴油中將針閥在閥體內來回抽動,徹底洗凈,這樣才能避免噴油器工作時因防銹油溶化而發生粘住針閥的故障。 [2] 

作用

1.提高油壓(定壓):將噴油壓力提高到10MPa~20MPa。

2.控制噴油時間(定時):按規定的時間噴油和停止噴油。

3.控制噴油量(定量):根據柴油機的工作情況,改變噴油量的多少,以調節柴油機的轉速和功率。 [2] 

要求

1.按柴油機工作順序供油,而且各缸供油量均勻。

2.各缸供油提前角要相同。

3.各缸供油延續時間要相等。

4.油壓的建立和供油的停止都必須迅速,以防止滴漏現象的發生。 [2] 

機械故障

編輯

常見的故障包括機械故障和電路故障。機械故障包括噴油器閥芯卡滯、噴油器阻塞及泄露,當噴油器出現上述故障后,會引起機械動作失效,從而影響發動機的正常運轉,有時甚至會使發動機出現嚴重故障。

噴油器針閥卡滯

噴油器的工作是由發動機控制單元發出信號,噴油器的電磁線圈通電后產生吸力從而驅動噴油器針閥動作。由于針閥與閥座的間隙被殘存的粘膠物阻塞,致使針閥動作發澀不能正常打開,從而影響正常的噴油量。噴油器發生針閥卡滯故障后,發動機會出現啟動困難、怠速不穩、加速不良等癥狀。產生噴油器卡滯的主要原因是使用了劣質汽油,因為劣質汽油中的石蠟和膠質,從而導致噴油器針閥卡滯。

噴油器阻塞

噴油器阻塞故障可分為噴油器內部阻塞和噴油器頭部外部阻塞。噴油器內部阻塞產生的原因多是汽油中混入雜質和污物阻塞噴油器內部針閥的運動間隙,使噴油器機械動作異常。當噴油器發生堵塞故障后,發動機會相應出現啟動困難、怠速不穩、加速不良等癥狀,情況嚴重時甚至會造成發動機嚴重抖動,并引發相關機械原件異常磨損情況的發生。

噴油器泄露

噴油器泄露故障一般分為內部泄漏和外部泄露兩種情況。噴油器內部泄露的原因多是其在使用中早期磨損,造成其在系統壓力的作用下,不斷向進氣歧管內泄露燃油。噴油器外部泄露多發生在噴油器和油軌連接處,多是密封面密封不言。若汽油泄漏在進氣歧管外部,油滴在氣缸體上,遇熱后會在發動機艙內蒸發,一旦出現電火花,隨時都會引起火災,后果很嚴重。當噴油器發生內部泄漏后,會造成噴油器噴射出的燃油霧化不好,引起發動機運轉不平穩,混合氣燃燒不完全,排氣管冒黑煙的現象,并會導致車輛的燃油消耗量明顯增加。當噴油器發生外部泄漏故障后,會導致發動機起動困難、怠速熄火、動力性下降、耗油量增加、運轉喘振和加速不良等故障的發生。另外,當噴油器與進氣管連接處的密封面破損后,還會導致進氣系統泄漏,致使額外的空氣進入發動機燃燒室,造成混合氣偏稀,引發發動機運轉異常。 [1] 

故障排除方法

編輯

1 噴油很少或噴不出油:

(1) 燃油系統油路有空氣 排除高壓或低壓油管中的空氣

(2) 噴油嘴偶件咬死 修磨或更換

(3) 噴油泵供油不正常 按噴油泵故障排除方法找出原因處理

(4) 高壓油管漏油 擰緊螺母、油管已有裂縫的應更換

(5) 噴油嘴偶件磨損 更換或修磨

2 噴油壓力低:

(1) 調壓螺釘松動 按規定重新調整至規定壓力,并擰緊鎖緊螺母

(2) 調壓彈簧變形 調整或更換

(3) 針閥卡住 清洗或研磨

(4) 彈簧座、頂桿等零件磨損 修理或更換

3 噴油壓力太高:

(1) 調壓彈簧彈力高 按規定重新調整至規定壓力,并擰緊鎖緊螺母。

(2) 針閥粘住,清洗或研磨。

(3) 噴孔堵塞 清理噴孔或更換油嘴(噴嘴)。

4 噴油器漏油:

(1) 調壓彈簧斷裂 更換新彈簧

(2) 針閥體座面損壞 更換

(3) 針閥咬死 清理修磨或更換

(4) 緊帽變行 更換

(5) 噴油器體平面磨損 修磨或更換

5 噴油霧化不良:

(1) 噴油壓力低,調整至規定壓力。

(2) 噴油嘴座面損壞或燒壞,修磨或更換。

(3) 噴油嘴偶件配合面有垃圾,及時清洗。

6 噴油成線:

(1) 噴孔堵塞 用直徑為0.2-0.3MM的鋼絲疏通噴孔。

(2) 針閥體座面過度磨損 更換新的針閥體。

(3) 針閥咬死 清洗修磨或更換。

7 針閥表面燒壞或呈藍黑色(柴油機過熱) 檢查冷卻系統,并注意更換偶件。柴油機不要長時間超負荷運行。 [1] 

檢測方法

編輯

可以使用LED試燈將LED測試燈連接在噴油器插頭兩個插孔中,打開點火開關。

(1)起動發動機,如果LED燈仍不亮,表示三極管C極和E極斷路。

(2)起動發動機時,LED燈會閃亮,說明傳感器和電腦無是好的

(3)如果LED燈一直點亮,表示三極管C極和E極短問題。

修理方法

用過柴油發電機的農民朋友一般都知道,噴油嘴是柴油機燃料供給系統的三對精密偶件之一。它的正常使用壽命在一千小時以上。但由于使用不當,往往使用幾百小時,甚至幾十小時就磨損卡死了。

一、噴油嘴卡死的主要原因:

1、柴油不清潔,高壓油管內有雜質,使針閥偶件關閉不嚴,燃燒室內高壓燃氣反竄,燒壞針閥偶件。此外,噴油器調壓彈簧、挺桿等零件上的臟物通過噴油器挺桿移到了噴油器針閥上部,或油路上用于防止漏油的棉繩、鉛絲經高壓油管進入噴油器,都會使針閥偶件卡死。

2、機溫過高噴油器冷卻不良,造成的針閥偶件卡死。而供油時間過遲、冷卻水道水垢過多或堵塞、水泵葉輪端面磨損、發動機長期超負荷等又會使發動機過熱。

3、出油閥磨損,使噴油器停止噴油時出現滴油現象,以致使噴曲嘴燃焦積炭,發生卡死的故障。

4、噴油器安裝時,漏裝墊片或墊片破壞,造成漏氣,引起噴油器局部溫度過高而卡死。

5、噴油壓力過低,造成燃燒室內高壓燃氣反竄;

6、零件制造方面的原因,如氣缸蓋上噴油器安裝孔與噴油器配合過緊,針閥體與氣缸蓋上的安裝孔間隙過小,氣缸蓋噴油器安裝孔加工過深等。

二、噴油嘴卡死的修理方法:先將卡死的噴油嘴放入柴油或機油內加溫,然后取出用布包住,再用手鉗夾緊針閥并慢慢活動,將針閥從針閥體內取出。將少量清潔機油滴在針閥體內,使針閥在針閥體內反復活動,直至針閥能在針閥體內活動自如。如針閥的密封面有燒傷的痕跡,應當用研磨膏進行研磨。研磨時要注意掌握研磨膏用量和研磨時間。將清洗干凈的針閥偶件裝上噴油器,并調整好噴油壓力后即可重新使用。 [2] 

噴油器結構示意圖

維護

編輯

一、要正確維護噴油泵的附件。

泵體側邊蓋、油尺、加油塞(呼吸器)、溢油閥、油池螺堵、油平面螺釘、油泵固定螺栓等,要保證完好無損,這些附件對噴油泵的工作起著至關重要的作用。如側邊蓋可防止灰塵、水份等雜質的侵入,呼吸器(帶濾網) 能有效防止機油變質,溢油閥保證燃油系統具有一定壓力而不進入空氣等。因此必須對這些附件加強保養,發現損壞或丟失要及時維修或更換。

二、要經常檢查噴油泵油池內的機油量及其質量是否符合要求。

每次啟動柴油發電機前都應檢查噴油泵內機油的量及其質量情況(靠發動機強制潤滑的噴油泵除外),確保機油數量足夠,質量良好,如果機油因混入水或柴油而變質,輕者造成柱塞及出油閥偶件的早期磨損,導致柴油機動力不足,啟動困難,嚴重時造成柱塞及出油閥偶件的腐蝕銹蝕。由于油泵內漏、出油閥工作不良、輸油泵挺桿與殼體磨損、密封圈損壞,都會使柴油漏入油池而稀釋機油,因此應根據機油的質量情況及時更換,更換時要對油池進行徹底清洗,把油池底部的油泥等雜質清除干凈,否則使用不長時間機油又會變質。機油的數量不可過多或過少,調速器內加油過多,易導致柴油機“飛車”,加油過少又將使潤滑不良,應以機油尺或機油平面螺釘為準。另外當柴油機較長時間不使用時,一定要檢查油泵油池中機油內是否有水、柴油等雜質,如有要立即更換,否則由于長時間存放,水分極易使柱塞、出油閥偶件銹蝕卡死而報廢。

三、要定期檢查調整噴油泵各缸的供油量。

由于柱塞偶件及出油閥偶件的磨損,造成柴油內漏,會使各缸的供油量減少或不勻,導致柴油機啟動困難、功率不足、耗油增多、運轉不穩。因此要定期檢查調整噴油泵各缸的供油量,確保柴油機功率的發揮。在實際使用中,可通過觀察柴油發電機的排煙、聽發動機聲音、摸排氣歧管溫度等方法來確定各缸供油量的大小。

四、要使用標準的高壓油管。

噴油泵在供油過程中,由于柴油的可壓縮性、高壓油管的彈性,高壓柴油會在管內形成壓力波動,壓力波在管內傳遞需要一定時間,為保證各缸供油間隔角一致、供油量均勻、柴油機工作平穩,高壓油管的長度及管徑是經過測算而選定的。因此當某缸高壓油管損壞時,應用標準長度和管徑的油管更換。而在實際使用中,由于缺少標準油管,用其它油管代用,不考慮油管的長度、管徑是否相同,使油管長度及管徑相差很大,雖然可以應急使用,但將導致該缸的供油提前角度及供油量發生變化,致使整機工作不平穩,因此在使用中一定要使用標準的高壓油管。

五、要定期就機檢查出閥偶件的密封情況。

噴油泵工作一段時間,通過檢查出油閥的密封情況可以對柱塞的磨損及油泵工作情況做粗略的判斷,從而有利于確定修理及保養方法。檢查時,擰開各缸高壓油管接頭,用輸油泵之手油泵泵油,如此時發現噴油泵頂部油管接頭有油流出,則說明該出油閥密封不良(當然如出油閥彈簧折斷也會出現這種情況),如多缸出現密封不良現象,則應對噴油泵進行徹底調試保養,更換偶件。

六、要及時更換已磨損的柱塞及出油閥偶件。

當發現柴油機啟動困難、功率下降、油耗增加時,通過調整噴油泵及噴油器仍不見好轉時,應拆檢噴油泵柱塞及出油閥偶件,如柱塞及出油閥磨損到一定程度,應及時更換,不要堅持再用。因偶件磨損后所帶來的柴油機啟動困難、油耗增加、動力不足等損失遠遠超過更換偶件所需費用,更換后柴油機的動力性及經濟性會有明顯改觀,因此要及時對磨損的偶件進行更換。

七、要把好柴油使用及過濾關,保證進入噴油泵內的柴油高度清潔。

一般來說,柴油發電機對柴油的濾清要求遠比汽油機對汽油的要求高得多,在使用時要選用符合要求牌號的柴油,而且至少經過48h沉淀。加強對柴油濾清器的清潔保養,及時清洗或更換濾芯;根據作業環境條件及時對柴油箱進行清洗,徹底去除油箱底部的油泥及水分,柴油中的任何雜質都會對噴油泵柱塞、出油閥偶件及傳動部件造成嚴重的腐蝕或磨損。

八、要定期檢查調整噴油泵供油提前角及各缸供油間隔角。

在使用時,由于聯軸節聯接螺栓的松動,凸輪軸及滾輪體部件的磨損,常導致供油提前角及各缸供油間隔角發生變化,使柴油燃燒變壞,柴油機的動力性、經濟性變差,同時啟動困難,運轉不穩,發出異響及過熱等。在實際使用中,多數駕駛員重視整體供油提前角的檢查調整,卻忽視了供油間隔角(涉及單泵供油提前角調整)的檢查調整,導致整體調整后雖然第一缸供油正時,但其余各缸由于凸輪軸、滾輪傳動部件的磨損等原因使供油并不一定正時,同樣會導致柴油機啟動困難、動力不足、運轉不平穩,尤其對于使用時間較長的噴油泵來說,更要重視對供油間隔角的檢查調整。

九、要定期檢查凸輪軸間隙。

對噴油泵凸輪軸的軸向間隙要求很嚴,一般在0.03~0.15mm之間,該間隙過大,會加劇滾輪傳動部件對凸輪工作表面的沖擊,從而加大凸輪表面的早期磨損,改變供油提前角度;凸輪軸軸承軸、徑間隙過大,易造成凸輪軸運轉不平穩,油量調節拉桿抖動,供油量發生周期性變化,使柴油機運轉不平穩,因此要定期檢查調整。凸輪軸軸向間隙過大時,可在兩側加入墊片調整,徑向間隙過大,一般要更換新品。

十、要定期檢查相關鍵槽及固定螺栓的磨損情況。 [2] 

噴油偏多原因

編輯

柴油發電機組的噴油泵供油過多常見的原因為以下三個:

1、噴油泵柱塞調整得供油量過大,或是調節齒圈鎖緊螺釘松脫而使調節齒圈位移,導致噴油泵供油量過大.

2、調速器內限制齒條最大油量的調整螺釘調整過大或油門手柄限制螺釘調整過大.

3、調速器中的機油過多,使供油量也會增多,并導致“飛車”。 [2]

什么是氣舉采油?

氣舉采油技術已有一百多年的歷史。國外主要產油國,氣舉采油占人工舉升采油的15%,氣舉采油的產液量占機采總量的30%,為第二大人工舉升方式。我國中原、塔里木、吐哈、大慶、遼河、四川、南海東部等油氣田相繼采用了氣舉采油方法,已初步形成一定的氣舉采油生產規模。氣舉采油設計正在向計算機自動化發展,工藝逐步配套,效率不斷提高。

氣舉采油(Gas Lift)是從地面將高壓氣體注入油井中,降低油管內氣、液混合物的密度,從而降低井底流壓的一種機械采油方法。利用氣體的膨脹能舉升井筒中液體,使停噴、間噴或自噴能力差的油井恢復生產或增強生產能力。

氣舉井與自噴井有許多相似之處,其井筒流動規律基本相同。自噴井依靠油層本身的能量生產,而氣舉井的主要能量來自于高壓氣體。油管下到油層中部,沉沒度最大,可獲得最高的油管工作效率。即使將來油層壓力下降,也能保持較好的氣舉油效果。

氣舉采油的優點很多,如排液量范圍大、舉升深度大、井下無機械磨損件、操作管理方便等。對含砂、結蠟、結垢以及含腐蝕性介質的油井優勢明顯。也可用于油井誘噴、排液、氣井排水采氣及小井眼的采油等。特別適用于有高壓氣源可供利用的油井。深井、高氣油比一和復雜結構油井的生產費用明顯低于其他人工舉升方式。

氣舉方式分為連續氣舉和間歇氣舉。可根據產液量或產液指數、井底壓力、舉升高度、氣液比等做出選擇。

一、氣舉系統多數氣舉系統設計成氣體可重復循環的流程。從油中分離出來的低壓天然氣經壓縮機增壓,重新注入油井以舉升液體。少數井可以直接利用高壓氣井的氣源。

圖6-11所示的循環系統適于連續氣舉。為保證間歇氣舉的瞬時注氣,可增加儲氣罐,僅利用管線的貯氣能力難以操作和調節。氣舉系統一般由壓氣站、地面配氣站、單井生產系統和地面生產系統構成。在此只討論單井生產系統,地面生產系統與其他舉升方式基本相同。

圖6-11氣舉系統示意圖

1.壓氣站壓氣站主要包括進氣處理裝置和壓縮機組,后者是核心。常用天然氣作為氣舉的工作介質,有時也用氮氣或燃燒過的空氣。工作介質的質量會直接影響壓縮機的效率和壽命。壓氣站多選用往復式壓縮機。

2.配氣站配氣站的作用是按一定的壓力和流量,給各氣舉井分配高壓氣體。連續氣舉可在配氣站按需分配氣量,也可用井口節流裝置的孔徑來控制單井的注氣量;對于間歇氣舉,必須增加精心設計的配注開關系統。在配氣站或井口一般采用雙筆記錄儀,連續記錄各氣舉井的油壓、套壓變化,以便及時了解單井工況。

3.氣舉采油井氣舉采油井有兩條通道,一條是油、套管環形空間,壓縮氣體的進入通道;另一條是油管,油氣混合物的產出通道。兩條通道的作用可以互換。油、套管環形空間和油管構成U型管。到達井口的高壓氣體的壓力是氣舉井生產的地面注氣壓力。在井口可以安裝氣嘴,以便將來氣壓力降到井口所需的注氣壓力。

4.氣舉管柱結構常用的單管氣舉管柱結構有開式、半閉式和閉式三種。

1)開式管柱油管管柱不帶封隔器,氣體能從油管底部進入油管,如圖6-12(a)所示。地面注氣壓力波動會引起環空液面升降。每次關井后,必須重新卸載。一般不宜采用此種管柱結構。

圖 6-12氣舉井管柱結構

2)半閉式管柱單封隔器完井,能阻止注入氣體從油管底部進入油管。油井一旦卸載,流體就無法回到油、套環形空間(環空)。這種結構既適用于連續氣舉也適用于間歇氣舉,如圖6-12(b)所示。

3)閉式管柱單封隔器及固定閥完井。以半閉式裝置為基礎,在油管柱末端加裝單流閥。避免了開式結構的種種弊端,使高壓氣體和井筒液體不能進入地層,如圖6-12(c)所示。

二、連續氣舉連續氣舉(Continuous Gas Lift)是最常用的氣舉采油方式。可以看作是自噴井生產的一種變型。在氣舉過程中,高壓氣體連續地從油、套環形空間注入,通過裝在油管上的氣舉閥進入油管,并與油井產出的流體混合,降低混合液的密度,從而降低井底流壓,將井筒流體連續舉升到地面,同時地層連續、穩定地生產。連續氣舉也可以采用油管注氣,環空產出混氣液的方式。氣舉設備(Gas Lift Equipment)主要包括壓縮機、配氣管匯、注入管柱、氣舉閥及相關的計量控制設備等。

連續氣舉的顯著特點是:能夠充分利用注入氣和地層產出氣的膨脹能量;注氣量和產液量相對穩定;排液量大。對于2000m深的油井,連續氣舉的經濟產量一般大于30m3/d。

三、啟動壓力和工作壓力油井停產后,井筒積液不斷增加。油管和套管內的液面最終會上升到一定位置并穩定下來,這時的液面叫靜液面(Static Liquid Level)。油井穩定生產時的環空液面叫動液面(Procing Fluid Level)。

當壓縮機向油、套環形空間注入高壓氣體時,環空液面將被擠壓下降。根據U形管原理,環空中的液體將被擠入油管,使油管內液面上升。不斷提高壓縮機壓力,環空液面最終會降到油管鞋處,此時對應的井口注入壓力稱為啟動壓力。啟動壓力是使環空液面下降到油管鞋處,壓縮機需提供的最大壓力。高壓氣體進入油管后,混氣液密度降低,液面不斷升高直至噴出地面。不斷注入高壓氣體,井底流壓會持續降低。當其低于油層壓力時,油層中的流體會流到井中,致使油管內的混氣液密度有所增加,壓縮機的注入壓力也隨之增加。經過一段時間后趨于穩定,最后達到一個協調、穩定的工作狀態。油井達到穩定氣舉生產所對應的壓縮機壓力稱為工作壓力。

在上述過程中,壓縮機的壓力變化如圖6-13所示。pe為啟動壓力,是氣舉過程中最大的井口注入壓力。po為氣舉生產趨于穩定時的井口注入壓力,即工作壓力。啟動壓力與油管下入深度、直徑以及靜液面位置有關。在中、深油井中,如果油管下入較深,地面壓縮機將需要很高的輸出壓力才能將氣體經油管鞋注入油管,使油井投入正常生產。當靜液面深度一定時,降低油管下入深度可降低啟動壓力。但是,當降到一定程度時,油井將無法正常生產。氣舉井的啟動壓力有兩個極端值。

圖6-13壓縮機壓力變化曲線

(1)靜液面很高,靠近井口。環形空間的液面還沒有被擠到油管鞋,油管內的液面已溢出井口。此時,啟動壓力最大,就等于整個油管長度上的液柱壓力:

最大啟動壓力,Pa;L——油管長度,m;ρL——液體密度,kg/m3;g——重力加速度,m/s2。

(2)當油層的滲透性較好,而且被擠壓的液面下降很緩慢時,從環形空間擠出的液體部分被油層吸收。在極端情況下,液體全部被油層吸收。當高壓氣到達油管鞋時,油管中的液面幾乎沒有升高。這種情況下,啟動壓力最低,由油管的沉沒深度確定,即:

式中p″e——最小啟動壓力,Pa;h′——沉沒度,m。

沉沒度是油管沉沒在動液面以下的深度,即油管鞋到動液面的距離。

e和p″e之間。

由圖6-13可以看出,啟動壓力pe明顯高于工作壓力po。如果壓縮機的額定輸出壓力小于啟動壓力,就無法把環空中的液體壓入油管,氣體不能進入油管就無法實現氣舉。要想實現氣舉,需大功率的壓縮機來保證氣舉的啟動。但正常生產時又不需要這么大的功率,勢必造成壓縮機功率的浪費,并增加了投入成本。為了在低成本下實現氣舉,必須降低啟動壓力,有效的方法是安裝氣舉閥(Gas Lift Valve)。

四、氣舉卸載過程氣舉井的啟動過程實際上是降低井內流體載荷的過程。因此,也稱為卸載過程。

理論上講,氣舉深度可以從井口到井底。然而,高壓氣井或壓縮機組提供的注氣壓力有限,使氣舉深度受到限制。為此,必須用卸載閥逐級卸載,降低液面和氣舉的啟動壓力,降低井底流壓,增加地層的產出量。卸載是大多數氣舉井生產的前提。無論是連續氣舉,還是間歇氣舉,卸載都是必經的工藝過程。在各類氣舉裝置中,氣舉閥都是多只串聯下入井中,自上而下工作,保證舉升井在最短時間內完成逐段卸載。油管鞋以上20m處可預先設置一個底閥作備用,以適應地層壓力下降引起的舉升深度增加。

氣舉管柱下井時,所有氣舉閥處于打開狀態。注入環空的高壓氣體將環空流體通過所有的氣舉閥壓入油管;隨后,高壓氣通過露出的第一個氣舉閥進入油管,進行卸載;第二個氣舉閥露出后,第一個氣舉閥關閉,注入氣從第二個氣舉閥進入油管繼續卸載;第三個氣舉閥露出后,第二個氣舉閥也關閉,注入氣經第三個氣舉閥進入油管,卸載繼續進行。高壓氣體持續下壓環空液面,直至排液能力達到設計的生產能力,卸載成功。此時進氣的氣舉閥就是正常氣舉生產的工作閥。底閥暫不露出液面。

五、氣舉閥原始的氣舉工藝只是按照計算深度在油管上開一些小孔。注入的高壓氣體通過小孔進入油管,降低油管內的混合液密度,排出其上油管中的液體。當油管內的壓力下降到設定值時,需要關閉該孔,以便于高壓氣體集中進入第二個孔。氣舉閥應運而生,它就是可以根據需要能夠關閉的智能閥孔。其作用就是使高壓氣體中途進入油管,排出該氣舉閥之上的液體,從而降低啟動壓力。氣舉閥關系到氣舉井能否正常生產。氣舉閥的發明、充氣波紋管氣舉閥的問世,給氣舉工藝帶來了革命性的飛躍。

1.氣舉閥的作用氣舉閥的作用主要有以下幾點:

(1)在油管柱上形成可開關的注氣通道。

(2)降低啟動壓力,用較小的壓縮機把井內液面降至注氣點處,啟動氣舉,并以正常生產所需的注氣壓力按預期的產量進行開采。

(3)靈活改變注氣深度,以適應地層供液能力的變化;(4)改變舉升深度,增大油井生產壓差,清潔油層,解除污染。

(5)間歇氣舉的氣舉閥可以防止過高的注氣壓力對下一個注氣周期產生影響。控制每個周期的注氣量。

(6)單流氣舉閥可以阻止井液從油管向環空倒流。

2.氣舉閥的結構最常用的是充氣波紋管氣舉閥,它由充氣波紋管、閥桿、閥球和閥孔等構成。在波紋管內預先充入氮氣構成加載單元,起到類似于彈簧的加載作用。如圖6-14所示,由于波紋管的承壓面積Ab大于閥孔的截面積Av作用于Ab上的壓力就是氣舉閥的控制壓力。因此,(a)圖所示為氣壓(即奎壓)控制氣舉閥;(b)圖為液壓(即油壓)控制氣舉閥。因充氣壓力隨環境溫度而變化,氣舉閥下井前要以井溫為準調試波紋管腔室的充氮壓力。

圖6-14充氣波紋管氣舉閥六、間歇氣舉間歇氣舉(Intermittent Gas Lift)是指將高壓氣體間歇地注入井內,使井內的液體周期性地噴出井口的采油方式。間歇氣舉能建立更低的井底流壓,但需要的瞬時注氣量更大。對于低壓地層、中低產量階段,間歇氣舉在經濟成本和靈活性方面,優于其他人工舉升方式。

間歇氣舉有常規間歇氣舉、柱塞氣舉、腔室氣舉、球塞氣舉等多種形式,前兩種最為常用。間歇氣舉僅適用于油管氣舉,普遍選用半閉式或閉式氣舉裝置。間歇氣舉大多使用液壓控制氣舉閥,要求工作閥具有大孔徑注氣通道,并且能迅速打開,以便有效地將液體段塞頂替到地面上來。同時,最大限度地降低注入氣的竄流量和液體的回落量。

1.常規間歇氣舉常規間歇氣舉是連續氣舉的一種變型,將連續注氣改為間歇注氣。因此,連續氣舉的卸載、設計等都可用于常規間歇氣舉。當連續氣舉不能順利實施卸載時,可以用常規間歇氣舉提高瞬時注氣量,卸載后再用連續氣舉方式進行生產。在氣舉開采中后期,為了節省氣源或增加排液深度,也常常把連續氣舉改為常規間歇氣舉。常規間歇氣舉可以作為強化排液的手段。

從地面上調節注氣壓力,只有當工作閥之上聚積了足夠高度的液柱時,工作閥才能被打開,使氣體進入油管而舉升液體。一個注氣周期可分為四個階段。

1)液體在油管中上升在這個階段,來自供氣管線的氣體經地面控制器進入環空,再通過工作閥進入油管內,推動液體段塞向上運動。同時,流體繼續從地層流入井底。上升過程中,由于注入氣的滑脫竄入及充氣尾端回落,液體段塞的長度逐漸減小。當液體段塞頂部到達地面時,這個階段結束。

2)液柱產出液體不斷上升,部分液柱從井口產出。加上氣體的竄入和液體回落,油管中液體段塞的長度急劇縮短,流速變得很大。當氣體前沿到達井口時,這個階段結束。只有在最短的時間內把整個液體段塞舉升到地面,才可獲得良好的經濟效果,因此工作閥必須是快速打開型的,使氣體能夠高速通過工作閥的整個截面。前兩個生產階段,液體的速度不應降低。

3)夾帶液的產出當氣泡突破液體到達地面時,該階段開始。液體段塞的產出減小了液柱壓力和系統阻力,導致氣體流速迅速增加。高速氣流的沖刷使液膜破碎成液滴,大量液滴伴隨氣流被帶出井口。這個階段持續到油管內的氣體停止流動。

4)液柱再生未產出的液滴、管壁上的液膜回落到油管底部與油層產出的液體匯合。再次把氣體注入環形空間,壓力達到預定值時,打開快速開啟型工作閥,開始下一個新的循環周期。

在間歇氣舉的四個階段中,只要井底流動壓差存在,地層流體就不斷流向井底。

2.柱塞氣舉通過對常規間歇氣舉的管流特征及工況分析發現,氣體竄流和液體回落對氣舉效率的影響極大。柱塞氣舉就是在油管中增加一個活動柱塞,形成氣、液間的固體界面,阻止或減少液體回落和氣體竄流。柱塞氣舉能夠降低氣體注入量,增加每周期的產液量,提高舉升效率。而且,柱塞周而復始的往復運動還能防止結蠟、結垢。柱塞氣舉是常規間歇氣舉的一種變型。

柱塞是柱塞氣舉的心臟部件,其結構和材料對舉升效果影響極大。柱塞有許多類型,不同柱塞的液體回落量不盡相同。理想的柱塞應包括以下三方面的特性:

(1)柱塞要有良好的耐磨性、抗震性和在油管內的防卡性;(2)在上行過程中,柱塞與油管間要有良好的密封性能;(3)在下落過程中,柱塞能迅速通過氣體或液體下降,下降阻力小。

不同的井能量不同,同一口井在不同時期能量也不一樣。根據地層能量大小可將柱塞氣舉分為普通柱塞氣舉和注氣柱塞氣舉。當地層氣液比達到最佳時,井剛好能在最佳條件下運行。當地層氣液比大于最低氣液比時,利用地層能量就能進行柱塞氣舉,即普通柱塞氣舉。普通柱塞氣舉是自噴的延伸,每個循環周期分為三個階段:柱塞上行,柱塞下落和壓力恢復。

當地層氣液比小于最低氣液比時,僅僅依靠地層的能量是不能實現柱塞氣舉的。需要補充注氣的柱塞氣舉稱為注氣柱塞氣舉。根據其運行條件和柱塞的動態特征,每個循環劃分為四個不同的階段:柱塞上行、液體段塞產出、氣體放噴和段塞再生(氣體壓力恢復),與常規間歇氣舉的各階段一一對應。

柴油機的預熱塞裝在哪??

在(過了增壓器、中冷器)的進氣道或中冷器出氣口處。

當柴油引擎啟動時,因為外部的低溫,使得依靠進氣、壓縮、爆炸、排氣循環的過程,難以啟動引擎的循環,此時就需要補助加溫。這個裝置裝設在引擎氣缸上部的預熱室,噴油嘴下方。

當柴油被噴出霧化時,會經過預熱塞而被加溫。當油氣被壓縮時,則容易爆炸,啟動引擎的循環,達到正常的引擎循環工作。按照電熱塞的發熱時間,可以分為慢速和快速型電熱塞。按材料分,可以分為金屬電熱塞和陶瓷電熱塞。

安裝位置與要求:

1、預熱器固定位置至少低于水箱蓋20-40厘米,這樣預熱器不至于因為缺水而發生干燒損壞機器。

2、安裝預熱器距汽車燃油管,剎車管的距離不少于10厘米。

3、預熱器出水口要高與進水口。

4 、預熱器進水口可以與汽車機體放水孔連接,預熱器出水口和暖風上水管連接。

5、 預熱器也可以串聯在暖風管或小循環管上。

什么是無桿泵采油?

無桿泵(Rodless Pump)采油也是油田生產中常見的機械采油方式。無桿泵采油無需抽油桿柱,減少了抽油桿柱斷脫和磨損帶來的作業和修井費用,適用于開采特殊井身結構的油井。隨著我國各大油田相繼進入中后開采期,地質條件越來越復雜,無桿泵將會得到更廣泛的應用。本節介紹潛油電泵、水力活塞泵、射流泵及螺桿泵采油的基礎知識。

一、潛油電泵電動潛油離心泵(Electric Submersible Pump)簡稱潛油電泵、電潛泵或電泵,是國內外應用最廣泛的無桿泵之一。地面電源通過變壓器、控制屏和電纜將電能輸送給井下電機,電機帶動多級離心泵的葉輪旋轉,將電能轉換為機械能,把井中的液體舉升到地面上來。

1.系統部件潛油電泵系統主要由電機、保護器、氣液分離器、多級離心泵、電纜、控制屏、變壓器和接線盒等部件組成,如圖6-37所示。

圖6-37典型潛油電泵系統

1)電機潛油電機用于驅動離心泵,工作原理與地面電機相同。潛油電機頻率60Hz時轉速為3500r/min,功率范圍在5.6~745.7kW內,串聯使用可獲得所需功率。其內充填的潤滑油用于潤滑,并將電機運行產生的熱量傳給井液,冷卻電機。潛油電機必須安裝在井液流過的地方。

2)保護器保護器起到連接電機與泵、隔離電機油與井液、平衡井筒和電機內的壓力的作用。運行時,電機內的潤滑油因溫度升高而膨脹,保護器內有足夠的空間儲存溢出的潤滑油,防止電機壓力過高;油溫下降、體積收縮時,保護器內的油又補充給電機。保護器外殼可作為潤滑油的附加冷卻面,可以罩住承受泵軸重力和各種不平衡力的止推軸承。

3)氣液分離器泵吸入口氣液比超過10%時,泵的特性變差,甚至發生氣鎖。氣液分離器作為泵的吸入口,可以把進泵氣量控制在泵的承受范圍之內,減少氣體對泵的影響。沉降式分離器只能處理氣液比低于10%的井液,且分離效率低于37%。旋轉式分離器能處理氣液比小于30%的井液,且分離效率高達90%以上。可根據泵吸入口游離氣量選擇分離器,也可由分離器的能力確定泵的最小吸入壓力和產量。

對于氣體含量很高的井,高級氣體處理裝置可使氣液在泵中均勻混合,像單相流一樣,以防止氣鎖,大大提高泵的氣體處理能力。

4)電纜為井下電機送電的有圓電纜和扁電纜。扁電纜用于電機和套管環形空間較小的井。電纜中可以有多股銅導線或鋁導線,導線之間和導線外的絕緣層必須耐溫、耐壓、耐腐蝕。絕緣層外有鉛護套,并以金屬鎧甲保護。不同型號的電纜壓降不同。

5)控制屏控制屏能自動控制系統的啟動和停機,具有短路、過載、欠載保護功能以及欠載延時自動啟動功能,能隨時測量電流和電壓,跟蹤系統的運行狀況。變頻控制屏可以在30~90Hz內任意改變井下電機的頻率、轉速,靈活調節泵的排量,但不會把電源瞬變傳到井下。軟啟動功能可以減少機組的損壞。控制屏的電壓在600~4900V之間。

6)變壓器變壓器利用電磁感應原理,將電網電壓轉變為井下電機和地面系統所需要的電壓。

7)接線盒井口和控制屏之間必須安裝一個接線盒。其作用是將沿電纜芯線上升到井口的天然氣放空,防止天然氣直接進入控制屏,使控制屏產生電火花時引起爆炸。

單流閥、泄油閥、扶正器、傳感器和變速驅動裝置等為可選附屬部件。單流閥的作用是在停泵時用于保持油管柱充滿流體,易于啟泵,降低功率消耗;防止液體倒流使機組反轉而燒毀電機,損壞軸和軸承。起泵、卸油管時,泄油閥可防止管中的液體流到地面上。泄油閥裝在單流閥上方,與單流閥同時使用。扶正器使泵和電機在井內居中,以便有效冷卻電機,防止電纜的摩擦和損壞。傳感器用于測量井下壓力和溫度,便于自動控制。

2.安裝方式不同安裝方式的潛油電泵系統組成和用途不盡相同。

標準安裝方式(圖6-37)主要用于油井采油,從下至上依次是電機、保護器、氣液分離器、多級離心泵及其他附屬部件。標準安裝方式可以讓產出液從電機旁流過以冷卻電機。

底部吸入口安裝方式從下到上依次是吸入口、泵、排出口、保護器、電機。流體由插到井底的尾管進泵,環空排出。底部吸入口安裝方式可以提高排量和效率,適用于油管摩阻大或泵徑大的井。

底部排出口安裝方式從下到上依次是排出口、泵、吸入口、保護器、電機。流體從油、套管環形空間進泵,由尾管排到下部層位。底部排出口安裝方式適用于油田注水開發或氣井排水采氣。

3.離心泵工作特性井下多級離心泵由單級離心泵串聯組成,是舉升液體的關鍵部件。單級離心泵由裝在泵軸上的葉輪和固定在泵殼上的導輪組成。井下多級離心泵的工作原理與地面多級離心泵相同:葉輪旋轉的離心力使流道中的液體增壓、加速后從出口排出,將機械能轉變為流體的壓能和動能。導輪的流通面積逐漸擴大,使部分動能轉變成靜壓。流體再進入下一級葉輪、導輪。重復這一過程,直到泵的出口達到所需要的壓力。

離心泵的特性是指排量、壓頭、功率、效率與轉速的關系。排量是指泵在單位時間內輸送的流體體積。壓頭是指單位質量流體得到的能量,也稱為有效壓頭或揚程。功率是指電機傳給葉輪的功率,稱為泵的軸功率。有效功率是指泵內流體獲得的功率。有效功率與泵軸功率之比為效率。泵軸單位時間內的轉數叫做轉速。

泵的特性曲線一般是固定轉速,在相對密度為1、粘度為1mPa·s的清水中測得的,稱為泵的標準特性曲線,代表單級泵的工作特性,如圖6-38所示。泵吸入口氣液比小于10%時,可以采用泵的標準特性曲線,否則需減少游離氣進泵或采用兩相泵的特性進行設計。離心泵的實際工作特性非常復雜。

圖6-38泵的標準特性曲線

由于各種因素影響,實際壓頭一般都低于理論壓頭。葉輪流道內的沿程阻力會產生水力損失;高壓液體通過葉輪和導輪間隙的漏失引起容積損失;摩擦會造成機械損失。

氣體占據部分泵腔空間,減少了進泵的液體。氣體使流體密度下降,影響泵的功率及各種能量損失,使泵的特性變差,偏離單相液體的特性。氣量太大會導致泵內流體排不出去,造成排液中斷,這種現象稱為氣鎖。停泵可使泵內氣體上升以消除氣鎖。

當泵內流體的壓力低于飽和蒸汽壓時,會產生小氣泡。氣泡流入高壓區后會冷凝和破碎,產生很大的沖擊力。這種現象和水擊相似,稱作氣蝕。氣蝕會損壞泵,并使泵的工作特性變差、排量和效率下降。足夠的泵吸入壓力可以防止氣鎖和氣蝕。

4.潛油電泵井管理為提高運行效率、延長系統壽命,潛油電泵必須在最高效率點附近工作;泵的額定排量和壓頭要與井的生產能力相協調;電機功率必須滿足舉升流體的需要。如果油井產能預測不準、油藏動態發生變化、選泵不當,都會使油井生產不協調,造成過載或欠載運行。應取全、取準產量、含水率、生產氣油比、油壓、套壓、電流卡片、動液面和靜液面位置等生產資料。控制合理的生產壓差,保證泵高效工作。當油井產量在泵的最佳排量范圍內時,應連續運轉,這是潛油電泵最佳的工作制度。如果泵的排量大于油井的供液能力,可以換成小排量泵、從地面注入部分液體或利用控制屏的欠載延時再啟動功能實現自動間歇生產,但頻繁啟動和停機會降低潛油電泵的壽命。

潛油電泵排量小、含蠟量高的油井可能會結蠟。玻璃油管防蠟、刮蠟片清蠟、熱油循環清蠟、熱電纜清蠟及化學清蠟等,都能保證潛油電泵井的正常生產。其中玻璃油管和加化學藥劑最為有效。刮蠟片清蠟應注意下入深度。加熱法會引起電纜起泡,加速電纜絕緣層老化。

為保證潛油電泵長期正常運轉,少出故障,要經常對泵機組進行維護和保養。發現問題必須準確判斷原因,盡快排除故障,提高潛油電泵井的運轉時率,取得更好的經濟效益。

二、水力活塞泵水力活塞泵(Hydraulic Pump)是靠液壓傳遞動力的無桿抽油設備,它是從地面把高壓動力液注入井內,驅動井下馬達運轉。馬達活塞又帶動泵柱塞往復運動,把機械能傳給產出流體,使其獲得足夠的能量到達地面。系統主要由動力液罐、地面泵、控制管匯、井口控制閥和井下泵組成,如圖6-39所示。

圖6-39水力活塞泵系統

A—動力液罐;B—三缸高壓泵;C—控制管匯;D—井口控制閥;E—井下泵1.動力液系統地面動力液系統按管理的井數分為單井系統和中心站多井系統;按動力液排出方式分為開式和閉式系統。不同系統的設備、地面流程及處理能力不同,選擇時要考慮現有設備、場地和投資成本等因素。

閉式系統中,動力液和地層流體不混合。向動力液中加化學劑的成本低,地面分離設備簡單,但需要動力液返出管線。動力液不能對稠油起稀釋和降粘作用。閉式系統主要用于海洋和城市。

開式系統中,動力液和地層流體混合,由同一通道返出地面,井身結構簡單。熱動力液可稀釋粘稠的地層流體,但所加潤滑、防腐、除氧等化學劑會被地層流體稀釋,損耗較大。

動力液質量對系統的維修成本和使用壽命影響很大。用原油作動力液潤滑性較好,地面柱塞泵的維護少,需要的化學劑少,成本低。用水作動力液對環境污染小,安全性好,但無潤滑作用,易產生腐蝕和漏失,還需脫氧處理。動力液可根據現場情況和投資成本選擇。

2.井下泵裝置按動力液的流動方向,井下泵裝置可分為正循環和反循環系統。正循環系統中動力液從裝泵的油管注入,從未裝泵的流動通道返出。反循環系統中動力液從未裝泵的流動通道注入,從裝泵的油管返出,目的是保護套管、降低摩阻。

根據安裝方式,井下泵裝置分為自由式和固定式。自由式裝置操作簡單、方便,改變動力液的流向可完成起、下泵作業。正循環動力液將泵下到井底工作,反循環起出泵維修,減少了停產時間和作業成本。將壓力計裝在泵下部可進行產能測試和中途測試,便于自動化管理。起泵后,能對地層進行各種措施和作業。自由式裝置的井下泵的直徑受油管尺寸限制。固定式裝置的井下泵安裝在油管底部,泵的直徑不受油管尺寸限制,但檢泵、換泵時必須起、下油管。固定式裝置主要用于高產井。

按完井方式,井下泵裝置分為套管式和平行式。套管式裝置用于開式動力液系統中,油、套環形空間作為流動通道。如果氣量太大,可在環空中加裝排氣管。大套管中可用同心管插入式套管裝置,兩油管間的環空做流動通道,外油管和套管的環空排放氣體。平行式裝置在開式系統中是采用兩根平行油管完井;閉式系統還要添加動力液排出管。氣體從油管外、套管內的通道排出。平行式裝置主要用于需排放氣體、保護套管或套管已經損壞的井。

與地面動力液系統相對應,井下裝置也分為開式和閉式。目前,常用套管自由式正循環開式動力液系統裝置和平行自由式正循環開式動力液系統裝置。

3.工作原理井下水力活塞泵包括馬達和泵以及連接它們的空心活塞桿。馬達和泵可以有多個。單作用泵僅在上沖程或下沖程向地面排液,雙作用泵在上沖程和下沖程都向地面排液。圖6-40所示為單作用井下泵裝置。

圖6-40單作用井下泵裝置

注入井中的高壓動力液驅動水力活塞泵上的馬達往復運動,將高壓勢能轉變為機械能。馬達驅動泵,又將機械能轉變為液體的靜壓,使產出液具有足夠的能量流到地面上來。

馬達由馬達缸套、馬達活塞、馬達閥、閥桿和馬達排出口組成。下沖程中馬達閥向下,高壓動力液進入馬達活塞的上腔,活塞下腔的低壓動力液從馬達排出口排出。下沖程末,馬達閥向上換位,動力液反向流動。上沖程中,高壓動力液進入馬達活塞下腔,馬達活塞上腔的低壓動力液排出。上沖程末,馬達閥向下換位,動力液倒流,開始下一個循環。

馬達閥也稱為倒向閥,在各個交替的半沖程中,改變動力液的流向。馬達閥通過換位交替地將動力液注入馬達活塞的上、下腔,推動馬達活塞往復運動,帶動泵柱塞運動。

泵的主要部件是缸套、柱塞、吸入閥、排出閥和平衡管。下沖程中,馬達活塞帶動泵柱塞作向下運動,泵柱塞下腔的壓力上升,吸入閥關閉,排出閥打開,泵排出高壓流體。同時泵柱塞上腔的壓力下降,排出閥關閉。泵腔內壓力降到吸入閥開啟壓力時,吸入地層流體。上沖程中,馬達活塞帶動泵柱塞向上運動。同樣靠泵內上、下腔容積的改變,控制泵腔內壓力的升降、吸入閥和排出閥的開關,把井下液體舉升到地面上來。

馬達活塞面積越大,泵的排出壓頭越高;泵柱塞的面積越大,泵的排量越高。

水力活塞泵也存在余隙和氣鎖。吸入流體含游離氣時,在泵排出沖程末端,氣體被壓縮在余隙的流體中。泵柱塞反向運動時,余隙中的氣體膨脹,壓力下降緩慢,泵吸入閥打開滯后,泵的有效沖程減少。嚴重時始終不能打開吸入閥,泵抽不出油來,這就是氣鎖。

4.排量若視驅動馬達的動力液為不可壓縮液體,馬達實際排量就等于動力液流量。馬達有效排量是馬達排出口的流量。有效排量與實際排量之比即為馬達效率,其大小與漏失有關。漏失又取決于配合間隙、動力液的粘度、磨損等。馬達實際排量比額定排量小很多時,馬達閥的動作不協調;實際排量接近額定排量時,馬達的使用壽命較短。

泵的有效排量是吸入條件下泵排出地層流體的體積流量。游離氣占據空間,溶解氣會使液體膨脹,致使地面排量與泵的井下排量不同。泵的實際排量是指吸入條件下通過泵的地層流體的體積流量。有效排量與實際排量之比即為漏失效率。漏失效率用以描述漏失、氣體降低有效沖程或造成間歇氣鎖等綜合影響。泵的額定排量是吸入條件、額定轉速下的實際排量。實際排量應小于額定排量。以額定排量選擇水力活塞泵,必須滿足排量要求,并與油井的產能相協調;要有足夠的舉升壓力以保證所需的井口剩余壓力。

三、水力射流泵水力射流泵(Hydraulic Jet Pump)簡稱射流泵。其生產系統由地面儲液罐、地面高壓泵和井下射流泵組成。射流泵與水力活塞泵的井下總成可以互換。射流泵的井下裝置也分為自由式和固定式,均采用開式動力液系統。

射流泵井下無運動部件,對于高溫深井、高產井、含砂、含腐蝕性介質、稠油以及高氣油比油井具有較強的適應性。其結構緊湊,還可適用于斜井、水平井。射流泵能自由投撈,靈活方便,可進行產能測試,維護費用低。

1.射流泵的結構及工作原理射流泵是通過兩種流體之間的動量交換傳遞能量的。典型的套管自由式井下射流泵如圖6-41所示,主要由噴嘴、喉管和擴散管等元件組成。噴嘴相當于射流泵的馬達,將動力液高壓勢能轉變為高速動能。喉管是直徑比噴嘴出口大的長圓筒,高速動力液與低速產出液在其中完全混合,交換動量。擴散管的橫截面沿流動方向逐漸增大,將動能轉變為靜壓,使混合流體獲得足夠的能量上升到地面上來。

圖6-41套管自由式井下射流泵

2.壓力損失射流泵的能量損失包括摩阻損失和混合損失,其大小與流體性質、流量、壓力及泵的結構參數等有關。噴嘴、吸入腔室、喉管和擴散管中都存在摩阻損失。設計得當可以消除吸入腔室的摩阻損失。混合損失主要發生在喉管內,其他部位很少,喉管長度是影響混合損失的主要參數。選泵時必須考慮這些影響因素,摩阻損失、混合損失之和最小為最佳選擇。同時,所選泵必須滿足井對排量和舉升高度的要求,在不出現氣蝕時效率最高。

3.氣體影響氣體要占據體積,使泵的液體排量下降。氣體也對泵內壓力損失產生影響。吸入腔室的壓力下降會導致脫氣,產生滑脫。氣體造成混合速度、濃度分布極不均勻,使泵效下降。泵的結構不同,氣體的影響程度差別較大。同時,氣體的舉升作用有利于降低排出管的壓力損失。

氣蝕對射流泵的正常工作影響很大。噴嘴和喉管之間的環形面積是產液進泵的吸入面積。環形面積越小,吸入流體的速度越高,喉管入口處的壓力越低。吸入壓力低于流體的蒸氣壓時產生小氣泡。氣泡進入喉管的高壓區就會冷凝和破碎,對泵產生沖蝕,這種現象稱為氣蝕。當氣蝕發生時,增加動力液流量不會提高產量。對一定的產量和吸入壓力,剛好能避免氣蝕的環形面積稱為最小氣蝕面積。

四、螺桿泵螺桿泵(Progressing Cavity Pump)是一種新型機械采油裝置。其工作可靠、容積效率高、抗磨蝕性能好,適用于高粘、高含砂、高含氣原油的開采。隨著合成橡膠及粘結技術的發展,螺桿泵采油成為稠油冷采、聚合物驅油田的主要舉升方式。

螺桿泵裝置可分為地面驅動和井下驅動兩類。地面驅動螺桿泵主要由驅動系統、連接器、抽油桿柱及井下泵組成,抽油桿柱旋轉驅動井下螺桿泵。井下驅動螺桿泵的電機、保護器和螺桿泵裝在井下,典型系統如圖6-42所示。

圖6-42井下驅動螺桿泵

螺桿泵由能轉動的單螺桿(轉子)和固定襯套(定子)組成。如圖6-43所示,E為螺桿偏心距,襯套內表面由橡膠制成,螺桿沿襯套內表面滾動使螺桿軸線繞襯套軸線旋轉,因此螺桿與傳動軸必須采用萬向軸或偏心聯軸節連接。

圖6-43螺桿泵結構示意圖

電纜把電源動力傳給井下電機,電機帶動螺桿泵旋轉,使產出液體獲得足夠的能量排到地面。螺桿在襯套內偏心旋轉時形成一系列密封腔。當泵吸入端的密封腔容積增大時,腔內壓力下降,流體進入。隨著螺桿轉動,這個腔室開始封閉,并向排出口移動,壓力不斷上升。當一個密封腔消失時,另一個同樣的密封腔形成,因此排量非常均勻。對于相同級數的螺桿泵,排量隨著壓頭的增加而下降。不同型號的螺桿泵特性不一樣,一般用清水測試獲得,用于選擇和設計。

思考題

1.為什么我們最希望采用自噴采油方法?

2.什么是流入動態關系?單相流和溶解氣驅的IPR曲線形狀怎樣?

3.無因次IPR曲線有何特點?Vogel方程描述什么關系?

4.什么是采油指數?單相滲流和油氣兩相滲流的采油指數有何異同?

r=pb=20MPa,井底流壓為12MPa時的產油量為60m3/d。(1)計算該井的最大產量;(2)計算井底流壓為10MPa時的產量,并繪制IPR曲線。(3)若FE=0.8,結果會怎樣變化?

6.試述兩相垂直管流的流動型態及其特點?

7.62mm內徑油管中的液體流量為0.8m3/s,氣體流量為0.6m3/s,持液率為0.7,計算其滑脫速度。

8.油嘴有何作用?油嘴流動的特點是什么?

9.怎樣才能達到臨界流動狀態?

10.什么是協調工作點?油井如何才能達到協調生產?

11.有哪幾類節點?節點分析方法的基本思路如何?

12.基本的氣舉系統包括哪幾個部分?

13.試述氣舉閥的類型、作用及其工作原理。

14.簡述氣舉裝置的類型及其適用條件。

15.試述連續氣舉的卸載過程。

16.常規間歇氣舉的每個循環周期可分為哪些階段?

17.簡述連續氣舉與間歇氣舉的異同。

18.何為氣舉的啟動壓力和工作壓力?

19.抽油機有哪些類型?

20.游梁式抽油機主要由哪些部件組成?其型號如何表示?

21.試述抽油泵的類型、基本結構及工作原理。

22.有桿泵抽油過程中下沖程油井出油嗎?出多少?泵的理論排量如何計算?

=Wr+WL。

24.某井下泵深度Lp=1200m,泵徑D=56mm,沖程S=3m,沖次n=12min-1,抽油桿直徑22mm,油管內徑、外徑分別為62mm、73mm,產出液體平均密度ρL=850kg/m3。計算懸點最大和最小載荷。

25.抽油機為什么要調平衡?有哪幾種平衡方式?平衡的基本原理如何?

26.分析影響泵效的主要因素以及提高泵效的措施。

27.氣體影響與供液不足的典型示功圖有何異同?

28.說明連抽帶噴、固定閥嚴重漏失和抽油桿斷脫時的典型示功圖特征,如何判別?

29.何謂光桿功率、水功率和有桿抽油系統效率?

30.無桿泵采油包括哪些方法?各有何特點?

31.潛油電泵系統包括哪些部件?

32.潛油電泵井中,為什么產出液體必須從電機外流過?

33.潛油電泵井中,為什么需采用高效率的井下氣液分離器?

34.水力活塞泵的開式系統和閉式系統各有何特點?

35.采油方法有哪些?各自的采油原理是什么?

很赞哦!(2555)

Instagram刷粉絲, Ins買粉絲自助下單平台, Ins買贊網站可微信支付寶付款的名片

职业:程序员,设计师

现居:河北省承德双桥区

工作室:小组

Email:[email protected]